Suppr超能文献

有性和无性二倍体中的遗传负荷:分离、显性和遗传漂变。

Genetic load in sexual and asexual diploids: segregation, dominance and genetic drift.

作者信息

Haag Christoph R, Roze Denis

机构信息

University of Edinburgh, Institute of Evolutionary Biology, Edinburgh EH9 3JT, United Kingdom.

出版信息

Genetics. 2007 Jul;176(3):1663-78. doi: 10.1534/genetics.107.073080. Epub 2007 May 4.

Abstract

In diploid organisms, sexual reproduction rearranges allelic combinations between loci (recombination) as well as within loci (segregation). Several studies have analyzed the effect of segregation on the genetic load due to recurrent deleterious mutations, but considered infinite populations, thus neglecting the effects of genetic drift. Here, we use single-locus models to explore the combined effects of segregation, selection, and drift. We find that, for partly recessive deleterious alleles, segregation affects both the deterministic component of the change in allele frequencies and the stochastic component due to drift. As a result, we find that the mutation load may be far greater in asexuals than in sexuals in finite and/or subdivided populations. In finite populations, this effect arises primarily because, in the absence of segregation, heterozygotes may reach high frequencies due to drift, while homozygotes are still efficiently selected against; this is not possible with segregation, as matings between heterozygotes constantly produce new homozygotes. If deleterious alleles are partly, but not fully recessive, this causes an excess load in asexuals at intermediate population sizes. In subdivided populations without extinction, drift mostly occurs locally, which reduces the efficiency of selection in both sexuals and asexuals, but does not lead to global fixation. Yet, local drift is stronger in asexuals than in sexuals, leading to a higher mutation load in asexuals. In metapopulations with turnover, global drift becomes again important, leading to similar results as in finite, unstructured populations. Overall, the mutation load that arises through the absence of segregation in asexuals may greatly exceed previous predictions that ignored genetic drift.

摘要

在二倍体生物中,有性生殖会重新排列基因座之间(重组)以及基因座内部(分离)的等位基因组合。多项研究分析了由于反复出现的有害突变导致的分离对遗传负荷的影响,但考虑的是无限种群,因此忽略了遗传漂变的影响。在此,我们使用单基因座模型来探究分离、选择和漂变的综合影响。我们发现,对于部分隐性有害等位基因,分离既影响等位基因频率变化的确定性成分,也影响由于漂变产生的随机成分。结果,我们发现,在有限和/或细分的种群中,无性生殖的突变负荷可能远高于有性生殖。在有限种群中,这种效应主要是因为,在没有分离的情况下,杂合子可能由于漂变而达到高频,而纯合子仍然会被有效淘汰;有分离时这是不可能的,因为杂合子之间的交配会不断产生新的纯合子。如果有害等位基因是部分隐性但并非完全隐性,这会在中等种群规模时导致无性生殖出现额外的负荷。在没有灭绝的细分种群中,漂变大多在局部发生,这会降低有性生殖和无性生殖中选择的效率,但不会导致全局固定。然而,无性生殖中的局部漂变比有性生殖中更强,导致无性生殖中有更高的突变负荷。在有周转的集合种群中,全局漂变再次变得重要,导致与有限的、无结构的种群中类似的结果。总体而言,无性生殖中由于缺乏分离而产生的突变负荷可能大大超过之前忽略遗传漂变的预测。

相似文献

1
Genetic load in sexual and asexual diploids: segregation, dominance and genetic drift.
Genetics. 2007 Jul;176(3):1663-78. doi: 10.1534/genetics.107.073080. Epub 2007 May 4.
2
Migration load and the coexistence of ecologically similar sexuals and asexuals.
Am Nat. 2007 Oct;170(4):567-72. doi: 10.1086/521235. Epub 2007 Aug 8.
3
Diploidy and the selective advantage for sexual reproduction in unicellular organisms.
Theory Biosci. 2009 Nov;128(4):249-85. doi: 10.1007/s12064-009-0077-9. Epub 2009 Nov 10.
4
Influences of dominance and evolution of sex in finite diploid populations.
PLoS One. 2015 May 26;10(5):e0128459. doi: 10.1371/journal.pone.0128459. eCollection 2015.
5
Deleterious mutations and selection for sex in finite diploid populations.
Genetics. 2010 Apr;184(4):1095-112. doi: 10.1534/genetics.109.108258. Epub 2010 Jan 18.
6
Rate of adaptation in sexuals and asexuals: a solvable model of the Fisher-Muller effect.
Genetics. 2013 Nov;195(3):941-55. doi: 10.1534/genetics.113.155135. Epub 2013 Aug 26.
7
Genetic diversity and fitness in small populations of partially asexual, self-incompatible plants.
Heredity (Edinb). 2010 May;104(5):482-92. doi: 10.1038/hdy.2009.159. Epub 2009 Nov 18.
8
Range expansions of sexual versus asexual organisms: Effects of reproductive assurance and migration load.
J Evol Biol. 2023 Apr;36(4):698-708. doi: 10.1111/jeb.14161. Epub 2023 Feb 28.
9
Relative effects of segregation and recombination on the evolution of sex in finite diploid populations.
Heredity (Edinb). 2013 Dec;111(6):505-12. doi: 10.1038/hdy.2013.72. Epub 2013 Jul 31.
10
Seasonally fluctuating selection can maintain polymorphism at many loci via segregation lift.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):E9932-E9941. doi: 10.1073/pnas.1702994114. Epub 2017 Oct 30.

引用本文的文献

1
Fusion, fission, and scrambling of the bilaterian genome in Bryozoa.
Genome Res. 2025 Jan 22;35(1):78-92. doi: 10.1101/gr.279636.124.
2
Allele surfing causes maladaptation in a Pacific salmon of conservation concern.
PLoS Genet. 2023 Sep 8;19(9):e1010918. doi: 10.1371/journal.pgen.1010918. eCollection 2023 Sep.
3
Genetic load: genomic estimates and applications in non-model animals.
Nat Rev Genet. 2022 Aug;23(8):492-503. doi: 10.1038/s41576-022-00448-x. Epub 2022 Feb 8.
4
Genomic and environmental influences on resilience in a cold-water fish near the edge of its range.
Evol Appl. 2021 Nov 9;14(12):2794-2814. doi: 10.1111/eva.13313. eCollection 2021 Dec.
5
Hybridization Facilitates Adaptive Evolution in Two Major Fungal Pathogens.
Genes (Basel). 2020 Jan 16;11(1):101. doi: 10.3390/genes11010101.
6
Synergy from reproductive division of labor and genetic complexity drive the evolution of sex.
J Biol Phys. 2018 Sep;44(3):317-329. doi: 10.1007/s10867-018-9485-8. Epub 2018 Apr 16.
7
Asexual but Not Clonal: Evolutionary Processes in Automictic Populations.
Genetics. 2017 Jun;206(2):993-1009. doi: 10.1534/genetics.116.196873. Epub 2017 Apr 4.
8
An Evolving Genetic Architecture Interacts with Hill-Robertson Interference to Determine the Benefit of Sex.
Genetics. 2016 Jun;203(2):923-36. doi: 10.1534/genetics.116.186916. Epub 2016 Apr 20.
9
Neutral and Selective Processes Drive Population Differentiation for Iris hexagona.
J Hered. 2015 Sep-Oct;106(5):628-36. doi: 10.1093/jhered/esv045. Epub 2015 Jul 10.
10
Influences of dominance and evolution of sex in finite diploid populations.
PLoS One. 2015 May 26;10(5):e0128459. doi: 10.1371/journal.pone.0128459. eCollection 2015.

本文引用的文献

1
The mutational load with epistatic gene interactions in fitness.
Genetics. 1966 Dec;54(6):1337-51. doi: 10.1093/genetics/54.6.1337.
2
The evolution of sex: empirical insights into the roles of epistasis and drift.
Nat Rev Genet. 2007 Feb;8(2):139-49. doi: 10.1038/nrg1985.
3
Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila.
Nature. 2007 Jan 4;445(7123):82-5. doi: 10.1038/nature05388.
4
Ameiotic recombination in asexual lineages of Daphnia.
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18638-43. doi: 10.1073/pnas.0606435103. Epub 2006 Nov 22.
5
6
Evolution of sex: why do organisms shuffle their genotypes?
Curr Biol. 2006 Sep 5;16(17):R696-704. doi: 10.1016/j.cub.2006.07.063.
7
Mutation accumulation in space and the maintenance of sexual reproduction.
Ecol Lett. 2006 Aug;9(8):941-6. doi: 10.1111/j.1461-0248.2006.00942.x.
8
Selection and analysis of spontaneous reciprocal mitotic cross-overs in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12819-24. doi: 10.1073/pnas.0605778103. Epub 2006 Aug 14.
9
The Hill-Robertson effect and the evolution of recombination.
Genetics. 2006 Jul;173(3):1793-811. doi: 10.1534/genetics.106.058586. Epub 2006 May 15.
10
The Distribution of Gene Frequencies in Populations.
Proc Natl Acad Sci U S A. 1937 Jun;23(6):307-20. doi: 10.1073/pnas.23.6.307.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验