Yi Nengjun, Shriner Daniel, Banerjee Samprit, Mehta Tapan, Pomp Daniel, Yandell Brian S
Department of Biostatistics, Section on Statistical Genetics, University of Alabama, Birmingham, Alabama 35294-0022, USA.
Genetics. 2007 Jul;176(3):1865-77. doi: 10.1534/genetics.107.071365. Epub 2007 May 4.
We extend our Bayesian model selection framework for mapping epistatic QTL in experimental crosses to include environmental effects and gene-environment interactions. We propose a new, fast Markov chain Monte Carlo algorithm to explore the posterior distribution of unknowns. In addition, we take advantage of any prior knowledge about genetic architecture to increase posterior probability on more probable models. These enhancements have significant computational advantages in models with many effects. We illustrate the proposed method by detecting new epistatic and gene-sex interactions for obesity-related traits in two real data sets of mice. Our method has been implemented in the freely available package R/qtlbim (http://www.qtlbim.org) to facilitate the general usage of the Bayesian methodology for genomewide interacting QTL analysis.
我们扩展了用于在实验杂交中定位上位性QTL的贝叶斯模型选择框架,以纳入环境效应和基因-环境相互作用。我们提出了一种新的快速马尔可夫链蒙特卡罗算法来探索未知参数的后验分布。此外,我们利用关于遗传结构的任何先验知识来提高更可能模型的后验概率。这些改进在具有多种效应的模型中具有显著的计算优势。我们通过在两个小鼠真实数据集中检测与肥胖相关性状的新上位性和基因-性别相互作用来说明所提出的方法。我们的方法已在免费可用的软件包R/qtlbim(http://www.qtlbim.org)中实现,以促进贝叶斯方法在全基因组相互作用QTL分析中的普遍应用。