Velazquez Jose L Perez, Huo Jeanne Zhen, Dominguez L Garcia, Leshchenko Yevgen, Snead O Carter
Programme for Neuroscience and Mental Health and Division of Neurology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada.
Epilepsia. 2007 Aug;48(8):1585-93. doi: 10.1111/j.1528-1167.2007.01120.x. Epub 2007 May 1.
Typical absence seizures differ from atypical absence seizures in terms of semiology, EEG morphology, network circuitry, and cognitive outcome, yet have the same pharmacological profile. We have compared typical to atypical absence seizures, in terms of the recruitment of different brain areas. Our initial question was whether brain areas that do not display apparent paroxysmal discharges during typical absence seizures, are affected during the ictal event in terms of synchronized activity, by other, distant areas where seizure activity is evident. Because the spike-and-wave paroxysms in atypical absence seizures invade limbic areas, we then asked whether an alteration in inhibitory processes in hippocampi may be related to the spread seizure activity beyond thalamocortical networks, in atypical seizures.
We used two models of absence seizures in rats: one of typical and the other of atypical absence seizures. We estimated phase synchronization, and evaluated inhibitory transmission using a paired-pulse paradigm.
In typical absence seizures, we observed an increase in synchronization between hippocampal recordings when spike-and-wave discharges occurred in the cortex and thalamus. This indicates that seizure activity in the thalamocortical circuitry enhances the propensity of limbic areas to synchronize, but is not sufficient to drive hippocampal circuitry into a full paroxysmal discharge. Lower paired-pulse depression was then found in hippocampus of rats that displayed atypical absence seizures.
These observations suggest that circuitries in brain areas that do not display apparent seizure activity become synchronized as seizures occur within thalamocortical circuitry, and that a weakened hippocampal inhibition may predispose to develop synchronization into full paroxysms during atypical absence seizures.
典型失神发作在症状学、脑电图形态、网络回路及认知结果方面与非典型失神发作不同,但具有相同的药理学特征。我们比较了典型失神发作和非典型失神发作时不同脑区的参与情况。我们最初的问题是,在典型失神发作期间未显示明显阵发性放电的脑区,在发作期是否会受到其他有明显发作活动的远处脑区同步活动的影响。由于非典型失神发作中的棘慢波阵发会侵入边缘系统脑区,我们接着探讨在非典型发作中,海马体抑制过程的改变是否可能与发作活动超出丘脑皮质网络的扩散有关。
我们使用了大鼠失神发作的两种模型:一种是典型失神发作模型,另一种是非典型失神发作模型。我们估计了相位同步,并使用配对脉冲范式评估了抑制性传递。
在典型失神发作中,当皮质和丘脑出现棘慢波放电时,我们观察到海马记录之间的同步性增加。这表明丘脑皮质回路中的发作活动增强了边缘系统脑区同步的倾向,但不足以驱动海马回路进入完全阵发性放电。然后在表现为非典型失神发作的大鼠海马体中发现较低的配对脉冲抑制。
这些观察结果表明,在丘脑皮质回路中出现发作时,未显示明显发作活动的脑区回路会变得同步,并且海马体抑制减弱可能易使非典型失神发作期间发展为完全阵发性同步。