Suppr超能文献

基于神经团模型动态分析探讨棘状星状细胞在癫痫发作起始中的关键调节作用

The Critical Modulatory Role of Spiny Stellate Cells in Seizure Onset Based on Dynamic Analysis of a Neural Mass Model.

作者信息

Tabatabaee Saba, Bahrami Fariba, Janahmadi Mahyar

机构信息

Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering (ECE), College of Engineering, University of Tehran, Tehran, Iran.

Department of Physiology, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Front Neurosci. 2021 Dec 24;15:743720. doi: 10.3389/fnins.2021.743720. eCollection 2021.

Abstract

Growing evidence suggests that excitatory neurons in the brain play a significant role in seizure generation. Nonetheless, spiny stellate cells are cortical excitatory non-pyramidal neurons in the brain, whose basic role in seizure occurrence is not well understood. In the present research, we study the critical role of spiny stellate cells or the excitatory interneurons (EI), for the first time, in epileptic seizure generation using an extended neural mass model inspired by a thalamocortical model originally introduced by another research group. Applying bifurcation analysis on this modified model, we investigated the rich dynamics corresponding to the epileptic seizure onset and transition between interictal and ictal states caused by EI connectivity to other cell types. Our results indicate that the transition between interictal and ictal states (preictal signal) corresponds to a supercritical Hopf bifurcation, and thus, the extended model suggests that before seizure onset, the amplitude and frequency of neural activities gradually increase. Moreover, we showed that (1) the altered function of GABAergic and glutamatergic receptors of EI can cause seizure, and (2) the pathway between the thalamic relay nucleus and EI facilitates the transition from interictal to ictal activity by decreasing the preictal period. Thereafter, we considered both sensory and cortical periodic inputs to study model responses to various harmonic stimulations. Bifurcation analysis of the model, in this case, suggests that the initial state of the model might be the main cause for the transition between interictal and ictal states as the stimulus frequency changes. The extended thalamocortical model shows also that the amplitude jump phenomenon and non-linear resonance behavior result from the preictal state of the modified model. These results can be considered as a step forward to a deeper understanding of the mechanisms underlying the transition from normal activities to epileptic activities.

摘要

越来越多的证据表明,大脑中的兴奋性神经元在癫痫发作中起着重要作用。尽管如此,棘状星型细胞是大脑中的皮质兴奋性非锥体神经元,其在癫痫发作中的基本作用尚未得到充分了解。在本研究中,我们首次使用受另一个研究小组最初提出的丘脑皮质模型启发的扩展神经团模型,研究棘状星型细胞或兴奋性中间神经元(EI)在癫痫发作产生中的关键作用。对这个修改后的模型进行分岔分析,我们研究了由EI与其他细胞类型的连接引起的癫痫发作起始以及发作间期和发作期状态之间转换所对应的丰富动力学。我们的结果表明,发作间期和发作期状态之间的转换(发作前信号)对应于超临界霍普夫分岔,因此,扩展模型表明在癫痫发作开始之前,神经活动的幅度和频率会逐渐增加。此外,我们表明:(1)EI的GABA能和谷氨酸能受体功能改变会导致癫痫发作;(2)丘脑中继核与EI之间的通路通过缩短发作前期促进从发作间期到发作期活动的转换。此后,我们考虑了感觉和皮质周期性输入,以研究模型对各种谐波刺激的反应。在这种情况下,对模型的分岔分析表明,随着刺激频率的变化,模型的初始状态可能是发作间期和发作期状态之间转换的主要原因。扩展的丘脑皮质模型还表明,幅度跳跃现象和非线性共振行为是由修改后模型的发作前期状态引起的。这些结果可被视为朝着更深入理解从正常活动向癫痫活动转变的潜在机制迈出的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d84e/8739215/4c72950fa057/fnins-15-743720-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验