Sharma Shilpi, Sharma Shailendra Kumar, Modak Rahul, Karmodiya Krishanpal, Surolia Namita, Surolia Avadhesha
Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
Antimicrob Agents Chemother. 2007 Jul;51(7):2552-8. doi: 10.1128/AAC.00124-07. Epub 2007 May 7.
The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (beta-ketoacyl-ACP synthase), FabG (beta-ketoacyl-ACP reductase), FabZ (beta-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (-)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.
恶性疟原虫对常用抗疟药产生耐药性菌株的出现,促使人们研发新的抗疟药物。在疟原虫中发现的II型脂肪酸合酶(FAS)不同于其人类宿主中的FAS(I型FAS),这为新型抗疟药的研发开辟了新途径。脂肪酸合成过程是通过丁酰 - 酰基载体蛋白(丁酰 - ACP)以两个碳单位进行迭代延伸,由四种酶依次作用构成FAS的延伸模块,直至获得所需的酰基长度。研究红细胞培养物中寄生虫的脂肪酸合成机制一直是一项具有挑战性的任务。在此,我们报告了疟原虫FAS延伸模块的体外重建,该模块涉及所有四种酶,即FabB/F(β - 酮酰 - ACP合酶)、FabG(β - 酮酰 - ACP还原酶)、FabZ(β - 酮酰 - ACP脱水酶)和FabI(烯酰 - ACP还原酶),并通过基质辅助激光解吸飞行时间质谱(MALDI - TOF MS)对其进行分析。酰基产物的分布证实了这种体外系统方法完全模拟了体内机制。使用延伸模块中酶的已知抑制剂,即浅蓝菌素、三氯生、NAS - 21/91和( - ) - 儿茶素没食子酸酯,我们证明通过MALDI - TOF MS可以明确追踪因抑制任何一种酶而产生的中间体积累。因此,这项工作不仅提供了一种强大的工具,用于更轻松、快速地进行抑制剂的高通量筛选,还允许对疟原虫FAS途径的生化特性进行研究。