Suppr超能文献

通过有限元建模和实验对肝脏组织中的射频消融过程进行研究。

Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment.

作者信息

Barauskas Rimantas, Gulbinas Antanas, Barauskas Giedrius

机构信息

Department of System Analysis, Kaunas University of Technology, Lithuania.

出版信息

Medicina (Kaunas). 2007;43(4):310-25.

Abstract

BACKGROUND

The character of ablation processes with high-frequency electrical current is similar in most biological tissues; however, quantitative characteristics are very different. Consequently, mathematical models of the process have a lot of specific aspects. In this study, we developed mathematical model of radiofrequency ablation in liver tissues with experimental validation of model in ex vivo porcine liver.

METHODS

The finite element nonlinear computational model for the simulation of the radiofrequency ablation processes and taking into account coupled electrical and thermal phenomena has been developed. The radiofrequency electric current processes are dominated by the active electric conductivity. The heat generation in biological tissues is determined by the electric current density. Simultaneously, the conductivity of the tissue is nonlinearly dependent upon the temperature of the tissue. The model has been implemented in COMSOL Multiphysics computational environment. Tests on physical characteristics of the thermal effect in ex vivo liver tissue have been performed and results compared.

RESULTS

Two oval-shaped zones of total and relative tissue destruction were highlighted. The principal distribution of the thermal effect is congruous with the theoretical model; however, the discrepancy of temperatures in experimental and theoretical models increases distally from active perfusion electrode.

CONCLUSIONS

Distribution of the thermal effect is congruous in the theoretical and experimental model; however, discrepancies of temperatures imply certain inadequacies of the mathematical models. Differences of computed and actual temperatures should be regarded predicting tissue ablation in clinical setting.

摘要

背景

在大多数生物组织中,高频电流消融过程的特性相似;然而,定量特征却大不相同。因此,该过程的数学模型有许多特定方面。在本研究中,我们建立了肝组织射频消融的数学模型,并在离体猪肝中对模型进行了实验验证。

方法

开发了用于模拟射频消融过程并考虑电与热耦合现象的有限元非线性计算模型。射频电流过程主要由有效电导率主导。生物组织中的热生成由电流密度决定。同时,组织的电导率非线性地依赖于组织温度。该模型已在COMSOL Multiphysics计算环境中实现。对离体肝组织热效应的物理特性进行了测试并比较了结果。

结果

突出显示了完全和相对组织破坏的两个椭圆形区域。热效应的主要分布与理论模型一致;然而,实验模型和理论模型中的温度差异在远离有源灌注电极处增大。

结论

理论模型和实验模型中热效应的分布一致;然而,温度差异意味着数学模型存在一定不足。在临床环境中预测组织消融时应考虑计算温度与实际温度的差异。

相似文献

2
Optimization of tissue physical parameters for accurate temperature estimation from finite-element simulation of radiofrequency ablation.
Phys Med Biol. 2015 Oct 7;60(19):N345-55. doi: 10.1088/0031-9155/60/19/N345. Epub 2015 Sep 9.
3
Finite element modeling of cooled-tip probe radiofrequency ablation processes in liver tissue.
Comput Biol Med. 2008 Jun;38(6):694-708. doi: 10.1016/j.compbiomed.2008.03.007. Epub 2008 May 7.
7
A finite element model for radiofrequency ablation of the myocardium.
IEEE Trans Biomed Eng. 1994 Oct;41(10):963-8. doi: 10.1109/10.324528.
8
Computer modeling of factors that affect the minimum safety distance required for radiofrequency ablation near adjacent nontarget structures.
J Vasc Interv Radiol. 2008 Jul;19(7):1079-86. doi: 10.1016/j.jvir.2008.04.003. Epub 2008 May 27.

引用本文的文献

2
Mathematical modeling of radiofrequency ablation for varicose veins.
Comput Math Methods Med. 2014;2014:485353. doi: 10.1155/2014/485353. Epub 2014 Dec 18.
3
Free Tools and Strategies for the Generation of 3D Finite Element Meshes: Modeling of the Cardiac Structures.
Int J Biomed Imaging. 2013;2013:540571. doi: 10.1155/2013/540571. Epub 2013 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验