Suppr超能文献

使用S形输入-输出函数进行人工耳蜗噪声抑制

Use of S-shaped input-output functions for noise suppression in cochlear implants.

作者信息

Kasturi Kalyan, Loizou Philipos C

机构信息

Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX 75083-0688, USA.

出版信息

Ear Hear. 2007 Jun;28(3):402-11. doi: 10.1097/AUD.0b013e31804793c4.

Abstract

OBJECTIVES

The aim of this study is to assess the influence of the shape of the acoustic-to-electric mapping function on speech recognition in noise by cochlear implant listeners.

DESIGN

A new acoustic-to-electric mapping function is proposed for cochlear implant users in noisy environments. The proposed s-shaped mapping function was expansive for low input levels up to a knee point level and compressive thereafter. The knee point of the mapping functions changed dynamically and was set proportional to the estimated noise floor level. The performance of the mapping function was evaluated on a sentence recognition task using IEEE sentences embedded in +5 to 10 dB SNR multitalker babble and in +5 dB SNR speech-shaped noise. Nine postlingually deafened cochlear implant users participated in the study.

RESULTS

Results indicated that the same s-shaped mapping function did not yield significant improvements for all cochlear implant users. Significant benefits in speech intelligibility were observed, however, when the s-shaped mapping function was optimized to individual cochlear implant users. Significantly higher performance was achieved with the s-shaped mapping functions than the conventional log mapping function used by cochlear implant users in their daily strategy, in both multitalker (+5 and +10 dB SNR) and continuous speech-shaped (+5 dB SNR) conditions.

CONCLUSIONS

These results clearly indicate that the shape of the nonlinear acoustic-to-electric mapping can have a significant effect on speech intelligibility in noise when it is optimized to individual cochlear implant users. The log functions currently used in most implant processors for mapping acoustic to electric amplitudes are not the best mapping functions to use in noisy environments. This is largely because compressive functions tend to amplify low-level segments of speech along with noise, thereby decreasing the spectral contrast and effective dynamic range. In contrast, the s-shaped mapping functions, which are partly compressive and partly expansive depending on the signal level, are more suitable for noisy environments and can produce significantly higher performance than the log-mapping functions.

摘要

目的

本研究旨在评估声电映射函数的形状对人工耳蜗使用者在噪声环境中语音识别的影响。

设计

针对处于噪声环境中的人工耳蜗使用者,提出了一种新的声电映射函数。所提出的S形映射函数在达到拐点电平之前的低输入电平范围内是扩展型的,此后是压缩型的。映射函数的拐点动态变化,并与估计的本底噪声电平成比例设置。使用嵌入在信噪比为+5至10 dB的多说话者嘈杂声以及信噪比为+5 dB的言语噪声中的IEEE句子,在句子识别任务中评估映射函数的性能。九名语后聋人工耳蜗使用者参与了该研究。

结果

结果表明,相同的S形映射函数并非对所有人工耳蜗使用者都能产生显著改善。然而,当S形映射函数针对个体人工耳蜗使用者进行优化时,在语音可懂度方面观察到了显著益处。在多说话者(信噪比为+5和+10 dB)和连续言语噪声(信噪比为+5 dB)条件下,与人工耳蜗使用者日常策略中使用的传统对数映射函数相比,S形映射函数实现了显著更高的性能。

结论

这些结果清楚地表明,当非线性声电映射的形状针对个体人工耳蜗使用者进行优化时,会对噪声环境中的语音可懂度产生显著影响。目前大多数植入式处理器中用于将声压映射为电压幅值的对数函数并非在噪声环境中使用的最佳映射函数。这主要是因为压缩函数往往会在放大语音低电平部分的同时放大噪声,从而降低频谱对比度和有效动态范围。相比之下,S形映射函数根据信号电平部分为压缩型部分为扩展型,更适合噪声环境,并且能产生比对数映射函数显著更高的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验