Doye Jonathan P K, Louis Ard A, Lin I-Chun, Allen Lucy R, Noya Eva G, Wilber Alex W, Kok Hoong Chwan, Lyus Rosie
Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, UK OX1 3QZ.
Phys Chem Chem Phys. 2007 Jun 14;9(18):2197-205. doi: 10.1039/b614955c. Epub 2007 Jan 23.
The ability to control the crystallization behaviour (including its absence) of particles, be they biomolecules such as globular proteins, inorganic colloids, nanoparticles, or metal atoms in an alloy, is of both fundamental and technological importance. Much can be learnt from the exquisite control that biological systems exert over the behaviour of proteins, where protein crystallization and aggregation are generally suppressed, but where in particular instances complex crystalline assemblies can be formed that have a functional purpose. We also explore the insights that can be obtained from computational modelling, focussing on the subtle interplay between the interparticle interactions, the preferred local order and the resulting crystallization kinetics. In particular, we highlight the role played by "frustration", where there is an incompatibility between the preferred local order and the global crystalline order, using examples from atomic glass formers and model anisotropic particles.
控制颗粒(无论是球状蛋白质等生物分子、无机胶体、纳米颗粒还是合金中的金属原子)的结晶行为(包括抑制结晶)的能力,具有基础和技术上的重要性。从生物系统对蛋白质行为的精确控制中可以学到很多东西,在生物系统中,蛋白质结晶和聚集通常受到抑制,但在特定情况下,可以形成具有功能目的的复杂晶体聚集体。我们还探讨了从计算建模中可以获得的见解,重点关注颗粒间相互作用、优选的局部有序性和由此产生的结晶动力学之间的微妙相互作用。特别是,我们以原子玻璃形成体和模型各向异性颗粒为例,强调了“受挫”所起的作用,即在优选的局部有序性和全局晶体有序性之间存在不相容性。