Suppr超能文献

在补丁粒子系统的液-气共存中,直线直径定律的失效及相关意外情况。

Breakdown of the law of rectilinear diameter and related surprises in the liquid-vapor coexistence in systems of patchy particles.

作者信息

Espinosa Jorge R, Garaizar Adiran, Vega Carlos, Frenkel Daan, Collepardo-Guevara Rosana

机构信息

Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom.

Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.

出版信息

J Chem Phys. 2019 Jun 14;150(22):224510. doi: 10.1063/1.5098551.

Abstract

The phase diagram of molecular or colloidal systems depends strongly on the range and angular dependence of the interactions between the constituent particles. For instance, it is well known that the critical density of particles with "patchy" interactions shifts to lower values as the number of patches is decreased [see Bianchi et al. Phys. Rev. Lett. 97, 168301 (2006)]. Here, we present simulations that show that the phase behavior of patchy particles is even more interesting than had been appreciated. In particular, we find that, upon cooling below the critical point, the width of the liquid-vapor coexistence region of a system of particles with tetrahedrally arranged patches first increases, then decreases, and finally increases again. In other words, this system exhibits a doubly re-entrant liquid-vapor transition. As a consequence, the system exhibits a very large deviation from the law of rectilinear diameter, which assumes that the critical density can be obtained by linear extrapolation of the averages of the densities of the coexisting liquid and vapor phases. We argue that the unusual behavior of this system has the same origin as the density maximum in liquid water and is not captured by the Wertheim theory. The Wertheim theory also cannot account for our observation that the phase diagram of particles with three patches depends strongly on the geometrical distribution of the patches and on the degree to which their position on the particle surface is rigidly constrained. However, the phase diagram is less sensitive to small angular spreads in the patch locations. We argue that the phase behavior reported in this paper should be observable in experiments on patchy colloids and may be relevant for the liquid-liquid equilibrium in solutions of properly functionalized dendrimers.

摘要

分子或胶体系统的相图在很大程度上取决于组成粒子间相互作用的范围和角度依赖性。例如,众所周知,具有“斑块状”相互作用的粒子的临界密度会随着斑块数量的减少而向更低值移动[见比安奇等人,《物理评论快报》97, 168301 (2006)]。在此,我们展示的模拟结果表明,斑块状粒子的相行为比之前所认识到的更为有趣。特别是,我们发现,在冷却至临界点以下时,具有四面体排列斑块的粒子系统的液 - 气共存区域的宽度先增加,然后减小,最后再次增加。换句话说,该系统呈现出双重再入式液 - 气转变。因此,该系统与直线直径定律存在很大偏差,直线直径定律假定临界密度可通过对共存液相和气相密度平均值进行线性外推得到。我们认为,该系统的异常行为与液态水中的密度最大值具有相同的起源,且未被韦特海姆理论所涵盖。韦特海姆理论也无法解释我们的观察结果,即具有三个斑块的粒子的相图强烈依赖于斑块的几何分布以及它们在粒子表面位置的刚性约束程度。然而,相图对斑块位置的小角度分布不太敏感。我们认为,本文所报道的相行为在斑块状胶体的实验中应该是可观察到的,并且可能与功能化树枝状大分子溶液中的液 - 液平衡相关。

相似文献

2
Liquid-vapor interfaces of patchy colloids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):012301. doi: 10.1103/PhysRevE.91.012301. Epub 2015 Jan 5.
3
The condensation and ordering of models of empty liquids.
J Chem Phys. 2011 Nov 7;135(17):174903. doi: 10.1063/1.3657406.
5
Phase diagram of inverse patchy colloids assembling into an equilibrium laminar phase.
Soft Matter. 2014 Nov 14;10(42):8464-74. doi: 10.1039/c4sm01559b.
6
Vapor-liquid coexistence of patchy models: relevance to protein phase behavior.
J Chem Phys. 2007 Aug 28;127(8):084902. doi: 10.1063/1.2768056.
7
Three-dimensional patchy lattice model for empty fluids.
J Chem Phys. 2012 Dec 28;137(24):244902. doi: 10.1063/1.4771591.
8
The effect of surface roughness on the phase behavior of colloidal particles.
J Chem Phys. 2020 Jan 31;152(4):044902. doi: 10.1063/1.5136080.
9
Two-patch colloidal model with re-entrant phase behaviour.
J Chem Phys. 2013 Sep 14;139(10):104905. doi: 10.1063/1.4819058.

引用本文的文献

1
Nucleosome spacing can fine-tune higher-order chromatin assembly.
Nat Commun. 2025 Jul 9;16(1):6315. doi: 10.1038/s41467-025-61482-x.
2
Chemically Informed Coarse-Graining of Electrostatic Forces in Charge-Rich Biomolecular Condensates.
ACS Cent Sci. 2025 Feb 11;11(2):302-321. doi: 10.1021/acscentsci.4c01617. eCollection 2025 Feb 26.
3
Benchmarking residue-resolution protein coarse-grained models for simulations of biomolecular condensates.
PLoS Comput Biol. 2025 Jan 13;21(1):e1012737. doi: 10.1371/journal.pcbi.1012737. eCollection 2025 Jan.
4
Nucleosome Spacing Can Fine-Tune Higher Order Chromatin Assembly.
bioRxiv. 2024 Dec 23:2024.12.23.627571. doi: 10.1101/2024.12.23.627571.
5
Dissipative Self-Assembly of Patchy Particles under Nonequilibrium Drive: A Computational Study.
J Chem Theory Comput. 2024 Oct 22;20(20):8844-8861. doi: 10.1021/acs.jctc.4c00856. Epub 2024 Oct 4.
6
Driven Self-Assembly of Patchy Particles Overcoming Equilibrium Limitations.
J Chem Theory Comput. 2024 Sep 10;20(18):7700-7. doi: 10.1021/acs.jctc.4c01118.
9
Principles of assembly and regulation of condensates of Polycomb repressive complex 1 through phase separation.
Cell Rep. 2023 Oct 31;42(10):113136. doi: 10.1016/j.celrep.2023.113136. Epub 2023 Sep 26.

本文引用的文献

1
How to simulate patchy particles.
Eur Phys J E Soft Matter. 2018 May 14;41(5):59. doi: 10.1140/epje/i2018-11667-x.
2
Valence, loop formation and universality in self-assembling patchy particles.
Soft Matter. 2018 Feb 28;14(9):1622-1630. doi: 10.1039/c7sm02419c.
3
Dynamics of Patchy Particles in and out of Equilibrium.
J Phys Chem B. 2018 Apr 5;122(13):3514-3518. doi: 10.1021/acs.jpcb.7b10726. Epub 2018 Jan 3.
4
Self-Assembly of Patchy Particles.
Nano Lett. 2004 Aug;4(8):1407-1413. doi: 10.1021/nl0493500.
5
Patchy particles made by colloidal fusion.
Nature. 2017 Oct 12;550(7675):234-238. doi: 10.1038/nature23901. Epub 2017 Sep 18.
6
Toward the observation of a liquid-liquid phase transition in patchy origami tetrahedra: a numerical study.
Eur Phys J E Soft Matter. 2016 Dec;39(12):131. doi: 10.1140/epje/i2016-16131-5. Epub 2016 Dec 27.
7
Percolation in binary and ternary mixtures of patchy colloids.
J Chem Phys. 2016 Aug 21;145(7):074903. doi: 10.1063/1.4960808.
8
Temperature (de)activated patchy colloidal particles.
J Phys Condens Matter. 2016 Jun 22;28(24):244008. doi: 10.1088/0953-8984/28/24/244008. Epub 2016 Apr 26.
9
Soft matter perspective on protein crystal assembly.
Colloids Surf B Biointerfaces. 2016 Jan 1;137:22-31. doi: 10.1016/j.colsurfb.2015.07.023. Epub 2015 Jul 14.
10
Generalization of Wertheim's theory for the assembly of various types of rings.
Soft Matter. 2015 Aug 7;11(29):5828-38. doi: 10.1039/c5sm00559k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验