Suppr超能文献

使用独立块估计方程分析空间分布的二元数据。

Analyzing spatially distributed binary data using independent-block estimating equations.

作者信息

Oman Samuel D, Landsman Victoria, Carmel Yohay, Kadmon Ronen

机构信息

Department of Statistics, Hebrew University of Jerusalem, Mount Scopus 91905 Jerusalem, Israel.

出版信息

Biometrics. 2007 Sep;63(3):892-900. doi: 10.1111/j.1541-0420.2007.00754.x. Epub 2007 Feb 9.

Abstract

We estimate the relation between binary responses and corresponding covariate vectors, both observed over a large spatial lattice. We assume a hierarchical generalized linear model with probit link function, partition the lattice into blocks, and adopt the working assumption of independence between the blocks to obtain an easily solved estimating equation. Standard errors are obtained using the "sandwich" estimator together with window subsampling (Sherman, 1996, Journal of the Royal Statistical Society, Series B58, 509-523). We apply this to a large data set describing long-term vegetation growth, together with two other approximate-likelihood approaches: pairwise composite likelihood (CL) and estimation under a working assumption of independence. The independence and CL methods give similar point estimates and standard errors, while the independent-block approach gives considerably smaller standard errors, as well as more easily interpretable point estimates. We present numerical evidence suggesting this increased efficiency may hold more generally.

摘要

我们估计二元响应与相应协变量向量之间的关系,这些都是在一个大的空间格点上观测到的。我们假设一个具有概率单位连接函数的分层广义线性模型,将格点划分为块,并采用块之间独立性的工作假设来获得一个易于求解的估计方程。标准误差是使用“三明治”估计器和窗口子采样得到的(Sherman,1996,《皇家统计学会杂志》,B辑58卷,509 - 523页)。我们将此应用于一个描述长期植被生长的大型数据集,以及另外两种近似似然方法:成对复合似然(CL)和在独立性工作假设下的估计。独立性方法和CL方法给出了相似的点估计和标准误差,而独立块方法给出的标准误差要小得多,并且点估计更易于解释。我们给出了数值证据,表明这种提高的效率可能更具普遍性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验