Mukherjee Bhramar, Zhang Li, Ghosh Malay, Sinha Samiran
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA.
Biometrics. 2007 Sep;63(3):834-44. doi: 10.1111/j.1541-0420.2007.00750.x. Epub 2007 May 8.
In case-control studies of gene-environment association with disease, when genetic and environmental exposures can be assumed to be independent in the underlying population, one may exploit the independence in order to derive more efficient estimation techniques than the traditional logistic regression analysis (Chatterjee and Carroll, 2005, Biometrika92, 399-418). However, covariates that stratify the population, such as age, ethnicity and alike, could potentially lead to nonindependence. In this article, we provide a novel semiparametric Bayesian approach to model stratification effects under the assumption of gene-environment independence in the control population. We illustrate the methods by applying them to data from a population-based case-control study on ovarian cancer conducted in Israel. A simulation study is conducted to compare our method with other popular choices. The results reflect that the semiparametric Bayesian model allows incorporation of key scientific evidence in the form of a prior and offers a flexible, robust alternative when standard parametric model assumptions do not hold.
在基因 - 环境与疾病关联的病例对照研究中,当假设在潜在人群中基因暴露和环境暴露相互独立时,人们可以利用这种独立性来推导比传统逻辑回归分析更有效的估计技术(Chatterjee和Carroll,2005年,《生物统计学》92卷,399 - 418页)。然而,对人群进行分层的协变量,如年龄、种族等,可能会导致非独立性。在本文中,我们提供了一种新颖的半参数贝叶斯方法,用于在对照人群基因 - 环境独立性假设下对分层效应进行建模。我们将这些方法应用于以色列开展的一项基于人群的卵巢癌病例对照研究的数据,以说明这些方法。进行了一项模拟研究,将我们的方法与其他常用方法进行比较。结果表明,半参数贝叶斯模型允许以先验的形式纳入关键科学证据,并且在标准参数模型假设不成立时提供了一种灵活、稳健的替代方法。