Suppr超能文献

基因-环境相互作用的病例对照研究:贝叶斯设计与分析。

Case-control studies of gene-environment interaction: Bayesian design and analysis.

作者信息

Mukherjee Bhramar, Ahn Jaeil, Gruber Stephen B, Ghosh Malay, Chatterjee Nilanjan

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Biometrics. 2010 Sep;66(3):934-48. doi: 10.1111/j.1541-0420.2009.01357.x.

Abstract

With increasing frequency, epidemiologic studies are addressing hypotheses regarding gene-environment interaction. In many well-studied candidate genes and for standard dietary and behavioral epidemiologic exposures, there is often substantial prior information available that may be used to analyze current data as well as for designing a new study. In this article, first, we propose a proper full Bayesian approach for analyzing studies of gene-environment interaction. The Bayesian approach provides a natural way to incorporate uncertainties around the assumption of gene-environment independence, often used in such an analysis. We then consider Bayesian sample size determination criteria for both estimation and hypothesis testing regarding the multiplicative gene-environment interaction parameter. We illustrate our proposed methods using data from a large ongoing case-control study of colorectal cancer investigating the interaction of N-acetyl transferase type 2 (NAT2) with smoking and red meat consumption. We use the existing data to elicit a design prior and show how to use this information in allocating cases and controls in planning a future study that investigates the same interaction parameters. The Bayesian design and analysis strategies are compared with their corresponding frequentist counterparts.

摘要

流行病学研究越来越频繁地探讨有关基因 - 环境相互作用的假设。对于许多经过充分研究的候选基因以及标准饮食和行为流行病学暴露情况,通常有大量的先验信息可供使用,这些信息可用于分析当前数据以及设计新的研究。在本文中,首先,我们提出一种合适的全贝叶斯方法来分析基因 - 环境相互作用的研究。贝叶斯方法提供了一种自然的方式来纳入在基因 - 环境独立性假设周围的不确定性,这种假设常用于此类分析中。然后,我们考虑关于乘法基因 - 环境相互作用参数的估计和假设检验的贝叶斯样本量确定标准。我们使用来自一项正在进行的大型结直肠癌病例对照研究的数据来说明我们提出的方法,该研究调查了2型N - 乙酰转移酶(NAT2)与吸烟和红肉消费之间的相互作用。我们使用现有数据引出一个设计先验,并展示如何在规划未来研究以调查相同相互作用参数时,利用这些信息来分配病例和对照。将贝叶斯设计和分析策略与其相应的频率主义对应方法进行了比较。

相似文献

1
Case-control studies of gene-environment interaction: Bayesian design and analysis.
Biometrics. 2010 Sep;66(3):934-48. doi: 10.1111/j.1541-0420.2009.01357.x.
3
Effect of NAT1 and NAT2 genetic polymorphisms on colorectal cancer risk associated with exposure to tobacco smoke and meat consumption.
Cancer Epidemiol Biomarkers Prev. 2006 Jan;15(1):99-107. doi: 10.1158/1055-9965.EPI-05-0618.
4
Meat and heterocyclic amine intake, smoking, NAT1 and NAT2 polymorphisms, and colorectal cancer risk in the multiethnic cohort study.
Cancer Epidemiol Biomarkers Prev. 2009 Jul;18(7):2098-106. doi: 10.1158/1055-9965.EPI-08-1218. Epub 2009 Jun 23.
8
Red meat intake, NAT2, and risk of colorectal cancer: a pooled analysis of 11 studies.
Cancer Epidemiol Biomarkers Prev. 2015 Jan;24(1):198-205. doi: 10.1158/1055-9965.EPI-14-0897. Epub 2014 Oct 23.
10
N-Acetyltransferase 2 genetic polymorphisms and risk of colorectal cancer.
World J Gastroenterol. 2011 Feb 14;17(6):760-5. doi: 10.3748/wjg.v17.i6.760.

引用本文的文献

1
Hierarchical selection of genetic and gene by environment interaction effects in high-dimensional mixed models.
Stat Methods Med Res. 2025 Jan;34(1):180-198. doi: 10.1177/09622802241293768. Epub 2024 Dec 10.
2
Pathological imaging-assisted cancer gene-environment interaction analysis.
Biometrics. 2023 Dec;79(4):3883-3894. doi: 10.1111/biom.13873. Epub 2023 May 17.
3
A Unified Model for the Analysis of Gene-Environment Interaction.
Am J Epidemiol. 2019 Apr 1;188(4):760-767. doi: 10.1093/aje/kwy278.
5
Exposure Enriched Case-Control (EECC) Design for the Assessment of Gene-Environment Interaction.
Genet Epidemiol. 2016 Nov;40(7):570-578. doi: 10.1002/gepi.21986. Epub 2016 Jun 17.
7
CYP24A1 variant modifies the association between use of oestrogen plus progestogen therapy and colorectal cancer risk.
Br J Cancer. 2016 Jan 19;114(2):221-9. doi: 10.1038/bjc.2015.443. Epub 2016 Jan 14.
8
Gene-by-Environment Interactions in Pancreatic Cancer: Implications for Prevention.
Yale J Biol Med. 2015 Jun 1;88(2):115-26. eCollection 2015 Jun.
9
BAYESIAN SEMIPARAMETRIC ANALYSIS FOR TWO-PHASE STUDIES OF GENE-ENVIRONMENT INTERACTION.
Ann Appl Stat. 2013 Mar;7(1):543-569. doi: 10.1214/12-AOAS599.
10
Finding novel genes by testing G × E interactions in a genome-wide association study.
Genet Epidemiol. 2013 Sep;37(6):603-13. doi: 10.1002/gepi.21748. Epub 2013 Jul 19.

本文引用的文献

1
Detecting gene-environment interactions using a combined case-only and case-control approach.
Am J Epidemiol. 2009 Feb 15;169(4):497-504. doi: 10.1093/aje/kwn339. Epub 2008 Dec 13.
3
Robust Bayesian sample size determination in clinical trials.
Stat Med. 2008 Jun 15;27(13):2290-306. doi: 10.1002/sim.3175.
6
Semiparametric Bayesian analysis of case-control data under conditional gene-environment independence.
Biometrics. 2007 Sep;63(3):834-44. doi: 10.1111/j.1541-0420.2007.00750.x. Epub 2007 May 8.
7
Exploiting gene-environment interaction to detect genetic associations.
Hum Hered. 2007;63(2):111-9. doi: 10.1159/000099183. Epub 2007 Feb 2.
8
Bayesian semiparametric modeling for matched case-control studies with multiple disease states.
Biometrics. 2004 Mar;60(1):41-9. doi: 10.1111/j.0006-341X.2004.00169.x.
9
A Bayesian approach to case-control studies with errors in covariables.
Biostatistics. 2002 Jun;3(2):229-43. doi: 10.1093/biostatistics/3.2.229.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验