Mukherjee Bhramar, Ahn Jaeil, Gruber Stephen B, Ghosh Malay, Chatterjee Nilanjan
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA.
Biometrics. 2010 Sep;66(3):934-48. doi: 10.1111/j.1541-0420.2009.01357.x.
With increasing frequency, epidemiologic studies are addressing hypotheses regarding gene-environment interaction. In many well-studied candidate genes and for standard dietary and behavioral epidemiologic exposures, there is often substantial prior information available that may be used to analyze current data as well as for designing a new study. In this article, first, we propose a proper full Bayesian approach for analyzing studies of gene-environment interaction. The Bayesian approach provides a natural way to incorporate uncertainties around the assumption of gene-environment independence, often used in such an analysis. We then consider Bayesian sample size determination criteria for both estimation and hypothesis testing regarding the multiplicative gene-environment interaction parameter. We illustrate our proposed methods using data from a large ongoing case-control study of colorectal cancer investigating the interaction of N-acetyl transferase type 2 (NAT2) with smoking and red meat consumption. We use the existing data to elicit a design prior and show how to use this information in allocating cases and controls in planning a future study that investigates the same interaction parameters. The Bayesian design and analysis strategies are compared with their corresponding frequentist counterparts.
流行病学研究越来越频繁地探讨有关基因 - 环境相互作用的假设。对于许多经过充分研究的候选基因以及标准饮食和行为流行病学暴露情况,通常有大量的先验信息可供使用,这些信息可用于分析当前数据以及设计新的研究。在本文中,首先,我们提出一种合适的全贝叶斯方法来分析基因 - 环境相互作用的研究。贝叶斯方法提供了一种自然的方式来纳入在基因 - 环境独立性假设周围的不确定性,这种假设常用于此类分析中。然后,我们考虑关于乘法基因 - 环境相互作用参数的估计和假设检验的贝叶斯样本量确定标准。我们使用来自一项正在进行的大型结直肠癌病例对照研究的数据来说明我们提出的方法,该研究调查了2型N - 乙酰转移酶(NAT2)与吸烟和红肉消费之间的相互作用。我们使用现有数据引出一个设计先验,并展示如何在规划未来研究以调查相同相互作用参数时,利用这些信息来分配病例和对照。将贝叶斯设计和分析策略与其相应的频率主义对应方法进行了比较。