Suh Greg S B, Ben-Tabou de Leon Shlomo, Tanimoto Hiromu, Fiala André, Benzer Seymour, Anderson David J
Division of Biology 216-76 and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA.
Curr Biol. 2007 May 15;17(10):905-8. doi: 10.1016/j.cub.2007.04.046.
How specific sensory stimuli evoke specific behaviors is a fundamental problem in neurobiology. In Drosophila, most odorants elicit attraction or avoidance depending on their concentration, as well as their identity [1]. Such odorants, moreover, typically activate combinations of glomeruli in the antennal lobe of the brain [2-4], complicating the dissection of the circuits translating odor recognition into behavior. Carbon dioxide (CO2), in contrast, elicits avoidance over a wide range of concentrations [5, 6] and activates only a single glomerulus, V [5]. The V glomerulus receives projections from olfactory receptor neurons (ORNs) that coexpress two GPCRs, Gr21a and Gr63a, that together comprise a CO2 receptor [7-9]. These CO2-sensitive ORNs, located in the ab1 sensilla of the antenna, are called ab1c neurons [10]. Genetic silencing of ab1c neurons indicates that they are necessary for CO2-avoidance behavior [5]. Whether activation of these neurons alone is sufficient to elicit this behavior, or whether CO2 avoidance requires additional inputs (e.g., from the respiratory system), remains unclear. Here, we show that artificial stimulation of ab1c neurons with light (normally attractive to flies) elicits the avoidance behavior typical of CO2. Thus, avoidance behavior appears hardwired into the olfactory circuitry that detects CO2 in Drosophila.
特定的感觉刺激如何引发特定的行为是神经生物学中的一个基本问题。在果蝇中,大多数气味剂根据其浓度以及自身特性引发吸引或回避反应[1]。此外,这类气味剂通常会激活大脑触角叶中的多个神经小球组合[2 - 4],这使得剖析将气味识别转化为行为的神经回路变得复杂。相比之下,二氧化碳(CO₂)在很宽的浓度范围内都会引发回避反应[5, 6],并且只激活一个单一的神经小球,即V神经小球[5]。V神经小球接收来自共表达两种G蛋白偶联受体(GPCR)——Gr21a和Gr63a的嗅觉受体神经元(ORN)的投射,这两种受体共同构成了一个CO₂受体[7 - 9]。这些位于触角ab1感觉器中的对CO₂敏感的ORN被称为ab1c神经元[10]。对ab1c神经元进行基因沉默表明,它们对于CO₂回避行为是必需的[5]。这些神经元的单独激活是否足以引发这种行为,或者CO₂回避是否需要额外的输入(例如来自呼吸系统的输入),目前仍不清楚。在这里,我们表明用光人工刺激ab1c神经元(光通常对果蝇有吸引力)会引发典型的CO₂回避行为。因此,回避行为似乎在果蝇中检测CO₂的嗅觉神经回路中是固有的。