Suppr超能文献

嗅觉传入纤维间的选择性侧信号传递对吸引和厌恶肾小球内 CO 的平行编码。

Parallel encoding of CO in attractive and aversive glomeruli by selective lateral signaling between olfactory afferents.

机构信息

Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.

Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Curr Biol. 2022 Oct 10;32(19):4225-4239.e7. doi: 10.1016/j.cub.2022.08.025. Epub 2022 Sep 6.

Abstract

We describe a novel form of selective crosstalk between specific classes of primary olfactory receptor neurons (ORNs) in the Drosophila antennal lobe. Neurotransmitter release from ORNs is driven by two distinct sources of excitation: direct activity derived from the odorant receptor and stimulus-selective lateral signals originating from stereotypic subsets of other ORNs. Consequently, the level of presynaptic neurotransmitter release from an ORN can be significantly dissociated from its firing rate. Stimulus-selective lateral signaling results in the distributed representation of CO-a behaviorally important environmental cue that directly excites a single ORN class-in multiple olfactory glomeruli, each with distinct response dynamics. CO-sensitive glomeruli coupled to behavioral attraction respond preferentially to fast changes in CO concentration, whereas those coupled to behavioral aversion more closely follow absolute levels of CO. Behavioral responses to CO also depend on the temporal structure of the stimulus: flies walk upwind to fluctuating, but not sustained, pulses of CO. Stimulus-selective lateral signaling generalizes to additional odors and glomeruli, revealing a subnetwork of lateral interactions between ORNs that reshapes the spatial and temporal structure of odor representations in a stimulus-specific manner.

摘要

我们描述了果蝇触角叶中特定类别的初级嗅觉受体神经元(ORNs)之间新型的选择性串扰形式。ORNs 的神经递质释放由两个不同的兴奋源驱动:源自气味受体的直接活性和源自其他 ORN 的定型亚群的刺激选择性侧向信号。因此,ORN 的突触前神经递质释放水平与其发放率可以显著分离。刺激选择性侧向信号导致 CO 的分布式表示,CO 是一种行为上重要的环境线索,它直接兴奋单个 ORN 类,在多个嗅觉小球中,每个小球都具有不同的反应动力学。与行为吸引相关的 CO 敏感小球对 CO 浓度的快速变化优先反应,而与行为厌恶相关的小球则更紧密地跟踪 CO 的绝对水平。对 CO 的行为反应也取决于刺激的时间结构:苍蝇逆风飞向波动的,但不是持续的 CO 脉冲。刺激选择性侧向信号泛化到其他气味和小球,揭示了 ORN 之间的侧向相互作用的子网,以刺激特异性的方式重塑气味表示的空间和时间结构。

相似文献

1
Parallel encoding of CO in attractive and aversive glomeruli by selective lateral signaling between olfactory afferents.
Curr Biol. 2022 Oct 10;32(19):4225-4239.e7. doi: 10.1016/j.cub.2022.08.025. Epub 2022 Sep 6.
3
Molecular, anatomical, and functional organization of the Drosophila olfactory system.
Curr Biol. 2005 Sep 6;15(17):1535-47. doi: 10.1016/j.cub.2005.07.034.
4
Temporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats.
J Neurophysiol. 2009 Feb;101(2):1073-88. doi: 10.1152/jn.90902.2008. Epub 2008 Dec 17.
5
Olfactory maps and odor images.
Curr Opin Neurobiol. 2002 Aug;12(4):387-92. doi: 10.1016/s0959-4388(02)00348-3.
6
Behavior Reveals Selective Summation and Max Pooling among Olfactory Processing Channels.
Neuron. 2016 Jul 20;91(2):425-38. doi: 10.1016/j.neuron.2016.06.011. Epub 2016 Jun 30.
9
Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe.
Neuron. 2007 Apr 5;54(1):89-103. doi: 10.1016/j.neuron.2007.03.010.
10
Odorant concentration differentiator for intermittent olfactory signals.
J Neurosci. 2014 Dec 10;34(50):16581-93. doi: 10.1523/JNEUROSCI.2319-14.2014.

引用本文的文献

1
Divergent synaptic dynamics originate parallel pathways for computation and behavior in an olfactory circuit.
Curr Biol. 2025 Jul 7;35(13):3146-3162.e8. doi: 10.1016/j.cub.2025.05.051. Epub 2025 Jun 19.
3
Nonlinear high-activity neuronal excitation enhances odor discrimination.
Curr Biol. 2025 Apr 7;35(7):1521-1538.e5. doi: 10.1016/j.cub.2025.02.034. Epub 2025 Mar 18.
4
Odour source distance is predictable from a time history of odour statistics for large scale outdoor plumes.
J R Soc Interface. 2024 Jul;21(216):20240169. doi: 10.1098/rsif.2024.0169. Epub 2024 Jul 31.
5
Sensorimotor transformation underlying odor-modulated locomotion in walking Drosophila.
Nat Commun. 2023 Oct 26;14(1):6818. doi: 10.1038/s41467-023-42613-8.
6
Olfactory search with finite-state controllers.
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2304230120. doi: 10.1073/pnas.2304230120. Epub 2023 Aug 14.
7
Temporal novelty detection and multiple timescale integration drive Drosophila orientation dynamics in temporally diverse olfactory environments.
PLoS Comput Biol. 2023 May 11;19(5):e1010606. doi: 10.1371/journal.pcbi.1010606. eCollection 2023 May.
8
Restructuring of olfactory representations in the fly brain around odor relationships in natural sources.
bioRxiv. 2023 Feb 16:2023.02.15.528627. doi: 10.1101/2023.02.15.528627.
9
Olfactory navigation in arthropods.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Jul;209(4):467-488. doi: 10.1007/s00359-022-01611-9. Epub 2023 Jan 20.

本文引用的文献

1
An action potential initiation mechanism in distal axons for the control of dopamine release.
Science. 2022 Mar 25;375(6587):1378-1385. doi: 10.1126/science.abn0532. Epub 2022 Mar 24.
2
Effect of Interglomerular Inhibitory Networks on Olfactory Bulb Odor Representations.
J Neurosci. 2020 Jul 29;40(31):5954-5969. doi: 10.1523/JNEUROSCI.0233-20.2020. Epub 2020 Jun 19.
3
Two Forms of Electrical Transmission Between Neurons.
Front Mol Neurosci. 2018 Nov 21;11:427. doi: 10.3389/fnmol.2018.00427. eCollection 2018.
4
Distinct activity-gated pathways mediate attraction and aversion to CO in Drosophila.
Nature. 2018 Dec;564(7736):420-424. doi: 10.1038/s41586-018-0732-8. Epub 2018 Nov 21.
6
Behavior Reveals Selective Summation and Max Pooling among Olfactory Processing Channels.
Neuron. 2016 Jul 20;91(2):425-38. doi: 10.1016/j.neuron.2016.06.011. Epub 2016 Jun 30.
7
Control of Mitral/Tufted Cell Output by Selective Inhibition among Olfactory Bulb Glomeruli.
Neuron. 2016 Jul 20;91(2):397-411. doi: 10.1016/j.neuron.2016.06.001. Epub 2016 Jun 23.
9
Simultaneous encoding of odors by channels with diverse sensitivity to inhibition.
Neuron. 2015 Feb 4;85(3):573-89. doi: 10.1016/j.neuron.2014.12.040. Epub 2015 Jan 22.
10
Coding and transformations in the olfactory system.
Annu Rev Neurosci. 2014;37:363-85. doi: 10.1146/annurev-neuro-071013-013941. Epub 2014 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验