Suppr超能文献

杏仁核驱动性呼吸暂停与焦虑的化学感受性起源。

Amygdala-driven apnea and the chemoreceptive origin of anxiety.

机构信息

Laureate Institute for Brain Research, Tulsa, OK 74136, USA; University of Tulsa, Oxley College of Health Sciences, Tulsa, OK 74104, USA; University of Iowa, Department of Neurology, Iowa City, IA 52242, USA.

Laureate Institute for Brain Research, Tulsa, OK 74136, USA.

出版信息

Biol Psychol. 2022 Apr;170:108305. doi: 10.1016/j.biopsycho.2022.108305. Epub 2022 Mar 7.

Abstract

Although the amygdala plays an important part in the pathogenesis of anxiety and generation of exteroceptive fear, recent discoveries have challenged the directionality of this brain-behavior relationship with respect to interoceptive fear. Here we highlight several paradoxical findings including: (1) amygdala lesion patients who experience excessive fear and panic following inhalation of carbon dioxide (CO), (2) clinically anxious patients who have significantly smaller (rather than larger) amygdalae and a pronounced hypersensitivity toward CO, and (3) epilepsy patients who exhibit apnea immediately following stimulation of their amygdala yet have no awareness that their breathing has stopped. The above findings elucidate an entirely novel role for the amygdala in the induction of apnea and inhibition of CO-induced fear. Such a role is plausible given the strong inhibitory connections linking the central nucleus of the amygdala with respiratory and chemoreceptive centers in the brainstem. Based on this anatomical arrangement, we propose a model of Apnea-induced Anxiety (AiA) which predicts that recurring episodes of apnea are being unconsciously elicited by amygdala activation, resulting in transient spikes in CO that provoke fear and anxiety, and lead to characteristic patterns of escape and avoidance behavior in patients spanning the spectrum of anxiety. If this new conception of AiA proves to be true, and activation of the amygdala can repeatedly trigger states of apnea outside of one's awareness, then it remains possible that the chronicity of anxiety disorders is being interoceptively driven by a chemoreceptive system struggling to maintain homeostasis in the midst of these breathless states.

摘要

尽管杏仁核在焦虑症的发病机制和外感受性恐惧的产生中起着重要作用,但最近的发现挑战了这种大脑-行为关系的方向性,涉及内感受性恐惧。在这里,我们强调了一些矛盾的发现,包括:(1)杏仁核损伤患者在吸入二氧化碳(CO)后会经历过度的恐惧和恐慌;(2)临床焦虑患者的杏仁核明显较小(而不是较大),并且对 CO 有明显的超敏反应;(3)癫痫患者在刺激其杏仁核后立即出现呼吸暂停,但没有意识到他们的呼吸已经停止。上述发现阐明了杏仁核对呼吸暂停和抑制 CO 诱导的恐惧的全新作用。鉴于杏仁核的中央核与脑干中的呼吸和化学感受中心之间存在强烈的抑制性连接,这种作用是合理的。基于这种解剖结构,我们提出了一种“呼吸暂停诱导焦虑(AiA)”的模型,该模型预测,反复发生的呼吸暂停是由杏仁核激活无意识地引起的,导致 CO 短暂增加,引起恐惧和焦虑,并导致跨越焦虑谱的患者产生特征性的逃避和回避行为模式。如果 AiA 的这种新概念被证明是正确的,并且杏仁核的激活可以在一个人不知情的情况下反复引发呼吸暂停状态,那么焦虑症的慢性可能是由化学感受系统在这些呼吸暂停状态中努力维持体内平衡所驱动的,这种情况可能会发生。

相似文献

1
Amygdala-driven apnea and the chemoreceptive origin of anxiety.
Biol Psychol. 2022 Apr;170:108305. doi: 10.1016/j.biopsycho.2022.108305. Epub 2022 Mar 7.
2
Amygdala-driven apnea: A breath of fresh air in respiratory neurobiology.
Biol Psychol. 2022 Apr;170:108307. doi: 10.1016/j.biopsycho.2022.108307. Epub 2022 Mar 10.
3
An apnea-hypothesis of anxiety generation: Novel, respiratory, and falsifiable.
Biol Psychol. 2022 Apr;170:108304. doi: 10.1016/j.biopsycho.2022.108304. Epub 2022 Mar 10.
5
The bed nucleus of the stria terminalis is critical for anxiety-related behavior evoked by CO2 and acidosis.
J Neurosci. 2014 Jul 30;34(31):10247-55. doi: 10.1523/JNEUROSCI.1680-14.2014.
6
Chronic immobilization stress occludes in vivo cortical activation in an animal model of panic induced by carbon dioxide inhalation.
Front Behav Neurosci. 2014 Sep 16;8:311. doi: 10.3389/fnbeh.2014.00311. eCollection 2014.
7
Failure to breathe persists without air hunger or alarm following amygdala seizures.
JCI Insight. 2023 Nov 22;8(22):e172423. doi: 10.1172/jci.insight.172423.
8
Amygdala-stimulation-induced apnea is attention and nasal-breathing dependent.
Ann Neurol. 2018 Mar;83(3):460-471. doi: 10.1002/ana.25178. Epub 2018 Mar 10.
9
The amygdala differentially regulates defensive behaviors evoked by CO.
Behav Brain Res. 2020 Jan 13;377:112236. doi: 10.1016/j.bbr.2019.112236. Epub 2019 Sep 16.
10
Relationships between the anxiety sensitivity index, the suffocation fear scale, and responses to CO2 inhalation.
J Anxiety Disord. 2001 May-Jun;15(3):247-58. doi: 10.1016/s0887-6185(00)00050-5.

引用本文的文献

1
Difficult-to-Treat Anxiety: A Neurocomputational Framework.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025 Mar 28. doi: 10.1016/j.bpsc.2025.03.008.
2
Astrocytes in Rodent Anxiety-Related Behavior: Role of Calcium and Beyond.
Int J Mol Sci. 2025 Mar 19;26(6):2774. doi: 10.3390/ijms26062774.
4
Gender Differences in the Association Between Anxiety and Interoceptive Insight.
Eur J Neurosci. 2025 Jan;61(1):e16672. doi: 10.1111/ejn.16672.
5
Central amygdala-to-pre-Bötzinger complex neurotransmission is direct and inhibitory.
Eur J Neurosci. 2024 Dec;60(11):6799-6811. doi: 10.1111/ejn.16589. Epub 2024 Nov 5.
7
Sensing, feeling and regulating: investigating the association of focal brain damage with voluntary respiratory and motor control.
Philos Trans R Soc Lond B Biol Sci. 2024 Aug 26;379(1908):20230251. doi: 10.1098/rstb.2023.0251. Epub 2024 Jul 15.
8
Metacognition as a window into subjective affective experience.
Psychiatry Clin Neurosci. 2024 Aug;78(8):430-437. doi: 10.1111/pcn.13683. Epub 2024 Jun 17.
10
The role of the peripheral and central adrenergic system in the construction of the subjective emotional experience of panic.
Psychopharmacology (Berl). 2024 Mar;241(3):627-635. doi: 10.1007/s00213-024-06548-2. Epub 2024 Feb 16.

本文引用的文献

1
Amygdala Allostasis and Early Life Adversity: Considering Excitotoxicity and Inescapability in the Sequelae of Stress.
Front Hum Neurosci. 2021 Jun 1;15:624705. doi: 10.3389/fnhum.2021.624705. eCollection 2021.
3
Carotid body chemoreceptors: physiology, pathology, and implications for health and disease.
Physiol Rev. 2021 Jul 1;101(3):1177-1235. doi: 10.1152/physrev.00039.2019. Epub 2021 Feb 11.
4
Differential efferent projections of GABAergic neurons in the basolateral and central nucleus of amygdala in mice.
Neurosci Lett. 2021 Feb 6;745:135621. doi: 10.1016/j.neulet.2020.135621. Epub 2021 Jan 6.
5
Neural Circuits of Interoception.
Trends Neurosci. 2021 Jan;44(1):17-28. doi: 10.1016/j.tins.2020.09.011.
6
Immunity and the carotid body: implications for metabolic diseases.
Bioelectron Med. 2020 Dec 23;6(1):24. doi: 10.1186/s42234-020-00061-5.
7
Central Amygdala Projections to Lateral Hypothalamus Mediate Avoidance Behavior in Rats.
J Neurosci. 2021 Jan 6;41(1):61-72. doi: 10.1523/JNEUROSCI.0236-20.2020. Epub 2020 Nov 13.
8
Monosynaptic Projections to Excitatory and Inhibitory preBötzinger Complex Neurons.
Front Neuroanat. 2020 Sep 4;14:58. doi: 10.3389/fnana.2020.00058. eCollection 2020.
9
Childhood trauma and amygdala nuclei volumes in youth at risk for mental illness.
Psychol Med. 2022 Apr;52(6):1192-1199. doi: 10.1017/S0033291720003177. Epub 2020 Sep 17.
10
Understanding rat emotional responses to CO.
Transl Psychiatry. 2020 Jul 24;10(1):253. doi: 10.1038/s41398-020-00936-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验