Suppr超能文献

基于结构的MHC-肽结合预测:算法比较及其在癌症疫苗设计中的应用

Structure-based prediction of MHC-peptide association: algorithm comparison and application to cancer vaccine design.

作者信息

Schiewe Alexandra J, Haworth Ian S

机构信息

Department of Pharmacology & Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089-9121, USA.

出版信息

J Mol Graph Model. 2007 Oct;26(3):667-75. doi: 10.1016/j.jmgm.2007.03.017. Epub 2007 Apr 4.

Abstract

Peptide vaccination for cancer immunotherapy requires identification of peptide epitopes derived from antigenic proteins associated with the tumor. Such peptides can bind to MHC proteins (MHC molecules) on the tumor-cell surface, with the potential to initiate a host immune response against the tumor. Computer prediction of peptide epitopes can be based on known motifs for peptide sequences that bind to a certain MHC molecule, on algorithms using experimental data as a training set, or on structure-based approaches. We have developed an algorithm, which we refer to as PePSSI, for flexible structural prediction of peptide binding to MHC molecules. Here, we have applied this algorithm to identify peptide epitopes (of nine amino acids, the common length) from the sequence of the cancer-testis antigen KU-CT-1, based on the potential of these peptides to bind to the human MHC molecule HLA-A2. We compared the PePSSI predictions with those of other algorithms and found that several peptides predicted to be strong HLA-A2 binders by PePSSI were similarly predicted by another structure-based algorithm, PREDEP. The results show how structure-based prediction can identify potential peptide epitopes without known binding motifs and suggest that side chain orientation in binding peptides may be obtained using PePSSI.

摘要

用于癌症免疫治疗的肽疫苗接种需要鉴定源自与肿瘤相关的抗原蛋白的肽表位。此类肽可与肿瘤细胞表面的MHC蛋白(MHC分子)结合,有可能引发宿主针对肿瘤的免疫反应。肽表位的计算机预测可基于与特定MHC分子结合的肽序列的已知基序、使用实验数据作为训练集的算法或基于结构的方法。我们开发了一种算法,称为PePSSI,用于肽与MHC分子结合的灵活结构预测。在此,我们应用该算法,基于这些肽与人MHC分子HLA - A2结合的潜力,从癌症 - 睾丸抗原KU - CT - 1的序列中鉴定肽表位(九个氨基酸,常见长度)。我们将PePSSI的预测结果与其他算法的预测结果进行了比较,发现PePSSI预测为强HLA - A2结合剂的几种肽也被另一种基于结构的算法PREDEP类似地预测。结果表明基于结构的预测如何能够在没有已知结合基序的情况下鉴定潜在的肽表位,并表明使用PePSSI可以获得结合肽中的侧链取向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验