Suppr超能文献

使用改良的半经验评分函数预测肽与 MHC 分子的结合亲和力。

Predicting peptide binding affinities to MHC molecules using a modified semi-empirical scoring function.

机构信息

Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.

出版信息

PLoS One. 2011;6(9):e25055. doi: 10.1371/journal.pone.0025055. Epub 2011 Sep 22.

Abstract

The Major Histocompatibility Complex (MHC) plays an important role in the human immune system. The MHC is involved in the antigen presentation system assisting T cells to identify foreign or pathogenic proteins. However, an MHC molecule binding a self-peptide may incorrectly trigger an immune response and cause an autoimmune disease, such as multiple sclerosis. Understanding the molecular mechanism of this process will greatly assist in determining the aetiology of various diseases and in the design of effective drugs. In the present study, we have used the Fresno semi-empirical scoring function and modify the approach to the prediction of peptide-MHC binding by using open-source and public domain software. We apply the method to HLA class II alleles DR15, DR1, and DR4, and the HLA class I allele HLA A2. Our analysis shows that using a large set of binding data and multiple crystal structures improves the predictive capability of the method. The performance of the method is also shown to be correlated to the structural similarity of the crystal structures used. We have exposed some of the obstacles faced by structure-based prediction methods and proposed possible solutions to those obstacles. It is envisaged that these obstacles need to be addressed before the performance of structure-based methods can be on par with the sequence-based methods.

摘要

主要组织相容性复合体 (MHC) 在人体免疫系统中起着重要作用。MHC 参与抗原呈递系统,协助 T 细胞识别外来或致病蛋白。然而,与自身肽结合的 MHC 分子可能会错误地触发免疫反应,导致自身免疫性疾病,如多发性硬化症。了解这一过程的分子机制将极大地有助于确定各种疾病的病因,并设计有效的药物。在本研究中,我们使用了 Fresno 半经验评分函数,并通过使用开源和公共领域软件对肽-MHC 结合的预测方法进行了修改。我们将该方法应用于 HLA 类 II 等位基因 DR15、DR1 和 DR4,以及 HLA 类 I 等位基因 HLA A2。我们的分析表明,使用大量的结合数据和多个晶体结构可以提高方法的预测能力。该方法的性能也与所使用的晶体结构的结构相似性相关。我们已经揭示了一些基于结构的预测方法所面临的障碍,并提出了可能的解决方案。预计在基于结构的方法的性能能够与基于序列的方法相媲美之前,这些障碍需要得到解决。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验