Hazen Robert M, Griffin Patrick L, Carothers James M, Szostak Jack W
Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, DC 20015-1305, USA.
Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1(Suppl 1):8574-81. doi: 10.1073/pnas.0701744104. Epub 2007 May 9.
Complex emergent systems of many interacting components, including complex biological systems, have the potential to perform quantifiable functions. Accordingly, we define "functional information," I(E(x)), as a measure of system complexity. For a given system and function, x (e.g., a folded RNA sequence that binds to GTP), and degree of function, E(x) (e.g., the RNA-GTP binding energy), I(E(x)) = -log(2)[F(E(x))], where F(E(x)) is the fraction of all possible configurations of the system that possess a degree of function > or = E(x). Functional information, which we illustrate with letter sequences, artificial life, and biopolymers, thus represents the probability that an arbitrary configuration of a system will achieve a specific function to a specified degree. In each case we observe evidence for several distinct solutions with different maximum degrees of function, features that lead to steps in plots of information versus degree of function.
包括复杂生物系统在内的由许多相互作用的组件构成的复杂涌现系统,有执行可量化功能的潜力。因此,我们将“功能信息”I(E(x))定义为系统复杂性的一种度量。对于给定的系统和功能x(例如与GTP结合的折叠RNA序列)以及功能程度E(x)(例如RNA - GTP结合能),I(E(x)) = -log(2)[F(E(x))],其中F(E(x))是系统所有可能构型中功能程度大于或等于E(x)的构型所占的比例。我们用字母序列、人工生命和生物聚合物来说明的功能信息,因此代表了系统的任意构型将在特定程度上实现特定功能的概率。在每种情况下,我们都观察到存在具有不同最大功能程度的几种不同解决方案的证据,这些特征导致了信息与功能程度关系图中的台阶。