Suppr超能文献

肌联蛋白Z1Z2的二级和三级结构弹性以及肌联蛋白链模型

Secondary and tertiary structure elasticity of titin Z1Z2 and a titin chain model.

作者信息

Lee Eric H, Hsin Jen, Mayans Olga, Schulten Klaus

机构信息

Center for Biophysics and Computational Biology and Beckman Institute, College of Medicine, Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

出版信息

Biophys J. 2007 Sep 1;93(5):1719-35. doi: 10.1529/biophysj.107.105528. Epub 2007 May 11.

Abstract

The giant protein titin, which is responsible for passive elasticity in muscle fibers, is built from approximately 300 regular immunoglobulin-like (Ig) domains and FN-III repeats. While the soft elasticity derived from its entropic regions, as well as the stiff mechanical resistance derived from the unfolding of the secondary structure elements of Ig- and FN-III domains have been studied extensively, less is known about the mechanical elasticity stemming from the orientation of neighboring domains relative to each other. Here we address the dynamics and energetics of interdomain arrangement of two adjacent Ig-domains of titin, Z1, and Z2, using molecular dynamics (MD) simulations. The simulations reveal conformational flexibility, due to the domain-domain geometry, that lends an intermediate force elasticity to titin. We employ adaptive biasing force MD simulations to calculate the energy required to bend the Z1Z2 tandem open to identify energetically feasible interdomain arrangements of the Z1 and Z2 domains. The finding is cast into a stochastic model for Z1Z2 interdomain elasticity that is generalized to a multiple domain chain replicating many Z1Z2-like units and representing a long titin segment. The elastic properties of this chain suggest that titin derives so-called tertiary structure elasticity from bending and twisting of its domains. Finally, we employ steered molecular dynamics simulations to stretch individual Z1 and Z2 domains and characterize the so-called secondary structure elasticity of the two domains. Our study suggests that titin's overall elastic response at weak force stems from a soft entropic spring behavior (not described here), from tertiary structure elasticity with an elastic spring constant of approximately 0.001-1 pN/A and, at strong forces, from secondary structure elasticity.

摘要

巨大的肌联蛋白负责肌肉纤维的被动弹性,它由大约300个规则的免疫球蛋白样(Ig)结构域和纤连蛋白III型重复序列组成。虽然源于其熵区域的软弹性以及源于Ig和FN-III结构域二级结构元件展开的刚性机械阻力已得到广泛研究,但对于相邻结构域彼此相对取向产生的机械弹性了解较少。在这里,我们使用分子动力学(MD)模拟来研究肌联蛋白两个相邻Ig结构域Z1和Z2的结构域间排列的动力学和能量学。模拟揭示了由于结构域-结构域几何形状导致的构象灵活性,这赋予了肌联蛋白中等的力弹性。我们采用自适应偏置力MD模拟来计算将Z1Z2串联打开所需的能量,以确定Z1和Z2结构域在能量上可行的结构域间排列。这一发现被纳入一个Z1Z2结构域间弹性的随机模型,该模型被推广到一个复制许多Z1Z2样单元并代表长肌联蛋白片段的多结构域链。该链的弹性特性表明,肌联蛋白从其结构域的弯曲和扭转中获得了所谓的三级结构弹性。最后,我们采用定向分子动力学模拟来拉伸单个Z1和Z2结构域,并表征这两个结构域的所谓二级结构弹性。我们的研究表明,肌联蛋白在弱力下的整体弹性响应源于软熵弹簧行为(此处未描述)、弹性弹簧常数约为0.001 - 1 pN/Å的三级结构弹性,以及在强力下的二级结构弹性。

相似文献

1
Secondary and tertiary structure elasticity of titin Z1Z2 and a titin chain model.
Biophys J. 2007 Sep 1;93(5):1719-35. doi: 10.1529/biophysj.107.105528. Epub 2007 May 11.
2
Tertiary and secondary structure elasticity of a six-Ig titin chain.
Biophys J. 2010 Mar 17;98(6):1085-95. doi: 10.1016/j.bpj.2009.12.4192.
3
Molecular origin of the hierarchical elasticity of titin: simulation, experiment, and theory.
Annu Rev Biophys. 2011;40:187-203. doi: 10.1146/annurev-biophys-072110-125325.
6
Mechanical strength of the titin Z1Z2-telethonin complex.
Structure. 2006 Mar;14(3):497-509. doi: 10.1016/j.str.2005.12.005.
7
Characterizing titin's I-band Ig domain region as an entropic spring.
J Cell Sci. 1998 Jun;111 ( Pt 11):1567-74. doi: 10.1242/jcs.111.11.1567.
10
Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils.
Biophys J. 2001 Mar;80(3):1442-51. doi: 10.1016/S0006-3495(01)76116-4.

引用本文的文献

1
Historical RNA expression profiles from the extinct Tasmanian tiger.
Genome Res. 2023 Aug;33(8):1299-1316. doi: 10.1101/gr.277663.123. Epub 2023 Jul 18.
3
The ZT Biopolymer: A Self-Assembling Protein Scaffold for Stem Cell Applications.
Int J Mol Sci. 2019 Sep 3;20(17):4299. doi: 10.3390/ijms20174299.
4
The Assembling and Contraction Mechanisms of Striated Muscles.
Front Chem. 2018 Nov 30;6:570. doi: 10.3389/fchem.2018.00570. eCollection 2018.
5
Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry.
Biomicrofluidics. 2016 Sep 21;10(5):054107. doi: 10.1063/1.4962992. eCollection 2016 Sep.
6
Molecular investigations into the mechanics of a muscle anchoring complex.
Biophys J. 2015 May 5;108(9):2322-32. doi: 10.1016/j.bpj.2015.03.036.
7
The adaptive biasing force method: everything you always wanted to know but were afraid to ask.
J Phys Chem B. 2015 Jan 22;119(3):1129-51. doi: 10.1021/jp506633n. Epub 2014 Oct 7.
8
Structure of giant muscle proteins.
Front Physiol. 2013 Dec 12;4:368. doi: 10.3389/fphys.2013.00368.
10
An energetic model for macromolecules unfolding in stretching experiments.
J R Soc Interface. 2013 Sep 18;10(88):20130651. doi: 10.1098/rsif.2013.0651. Print 2013 Nov 6.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Molecular determinants for the recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin.
FASEB J. 2007 May;21(7):1383-92. doi: 10.1096/fj.06-7644com. Epub 2007 Jan 10.
3
The mechanical fingerprint of a parallel polyprotein dimer.
Biophys J. 2007 Feb 15;92(4):L36-8. doi: 10.1529/biophysj.106.097741. Epub 2006 Dec 8.
4
Sugar binding and protein conformational changes in lactose permease.
Biophys J. 2006 Dec 1;91(11):3972-85. doi: 10.1529/biophysj.106.085993. Epub 2006 Sep 8.
6
Studies on titin PEVK peptides and their interaction.
Arch Biochem Biophys. 2006 Oct 1;454(1):16-25. doi: 10.1016/j.abb.2006.07.017. Epub 2006 Aug 15.
7
Conformational equilibrium in alanine-rich peptides probed by reversible stretching simulations.
J Phys Chem B. 2006 Aug 24;110(33):16718-23. doi: 10.1021/jp0601116.
8
Stretching the immunoglobulin 27 domain of the titin protein: the dynamic energy landscape.
Biophys J. 2006 Nov 1;91(9):3446-55. doi: 10.1529/biophysj.105.074278. Epub 2006 Aug 11.
9
Molecular mechanisms of cellular mechanics.
Phys Chem Chem Phys. 2006 Aug 28;8(32):3692-706. doi: 10.1039/b606019f. Epub 2006 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验