Suppr超能文献

肌肉锚定复合体力学机制的分子研究

Molecular investigations into the mechanics of a muscle anchoring complex.

作者信息

Bodmer Nicholas K, Theisen Kelly E, Dima Ruxandra I

机构信息

Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.

Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.

出版信息

Biophys J. 2015 May 5;108(9):2322-32. doi: 10.1016/j.bpj.2015.03.036.

Abstract

The titin-telethonin complex, essential for anchoring filaments in the Z-disk of the sarcomere, is composed of immunoglobulin domains. Surprisingly, atomic force microscopy experiments showed that it resists forces much higher than the typical immunoglobulin domain and that the force distribution is unusually broad. To investigate the origin of this behavior, we developed a multiscale simulation approach, combining minimalist and atomistic models (SOP-AT). By following the mechanical response of the complex on experimental timescales, we found that the mechanical stability of titin-telethonin is modulated primarily by the strength of contacts between telethonin and the two titin chains, and secondarily by the timescales of conformational excursions inside telethonin and the pulled titin domains. Importantly, the conformational transitions executed by telethonin in simulations support its proposed role in mechanosensing. Our SOP-AT computational approach thus provides a powerful tool for the exploration of the link between conformational diversity and the broadness of the mechanical response, which can be applied to other multidomain complexes.

摘要

肌联蛋白-伴肌动蛋白复合物对于将细丝锚定在肌节的Z盘至关重要,它由免疫球蛋白结构域组成。令人惊讶的是,原子力显微镜实验表明,它能抵抗比典型免疫球蛋白结构域高得多的力,而且力的分布异常广泛。为了研究这种行为的起源,我们开发了一种多尺度模拟方法,结合了极简模型和原子模型(SOP-AT)。通过在实验时间尺度上跟踪复合物的力学响应,我们发现肌联蛋白-伴肌动蛋白的力学稳定性主要由伴肌动蛋白与两条肌联蛋白链之间的接触强度调节,其次由伴肌动蛋白和被拉伸的肌联蛋白结构域内构象偏移的时间尺度调节。重要的是,模拟中伴肌动蛋白执行的构象转变支持了其在机械传感中的作用。因此,我们的SOP-AT计算方法为探索构象多样性与力学响应广度之间的联系提供了一个强大的工具,该工具可应用于其他多结构域复合物。

相似文献

1
Molecular investigations into the mechanics of a muscle anchoring complex.
Biophys J. 2015 May 5;108(9):2322-32. doi: 10.1016/j.bpj.2015.03.036.
2
The titin-telethonin complex is a directed, superstable molecular bond in the muscle Z-disk.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13307-133310. doi: 10.1073/pnas.0902312106. Epub 2009 Jul 21.
3
Evidence for a dimeric assembly of two titin/telethonin complexes induced by the telethonin C-terminus.
J Struct Biol. 2006 Aug;155(2):239-50. doi: 10.1016/j.jsb.2006.03.028. Epub 2006 Apr 27.
4
Influence of V54M mutation in giant muscle protein titin: a computational screening and molecular dynamics approach.
J Biomol Struct Dyn. 2017 Apr;35(5):917-928. doi: 10.1080/07391102.2016.1166456. Epub 2016 Jun 3.
5
Mechanical strength of the titin Z1Z2-telethonin complex.
Structure. 2006 Mar;14(3):497-509. doi: 10.1016/j.str.2005.12.005.
6
Solution scattering suggests cross-linking function of telethonin in the complex with titin.
J Biol Chem. 2003 Jan 24;278(4):2636-44. doi: 10.1074/jbc.M210217200. Epub 2002 Nov 20.
7
Molecular Characterisation of Titin N2A and Its Binding of CARP Reveals a Titin/Actin Cross-linking Mechanism.
J Mol Biol. 2021 Apr 30;433(9):166901. doi: 10.1016/j.jmb.2021.166901. Epub 2021 Feb 27.
8
Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk.
Nature. 2006 Jan 12;439(7073):229-33. doi: 10.1038/nature04343.
9
Mechanical responses of the mechanosensitive unstructured domains in cardiac titin.
Biol Cell. 2018 Mar;110(3):65-76. doi: 10.1111/boc.201700061. Epub 2017 Dec 28.

引用本文的文献

1
Empagliflozin Preserves Skeletal Muscle Function in a HFpEF Rat Model.
Int J Mol Sci. 2022 Sep 20;23(19):10989. doi: 10.3390/ijms231910989.
2
Adaptability of protein structures to enable functional interactions and evolutionary implications.
Curr Opin Struct Biol. 2015 Dec;35:17-23. doi: 10.1016/j.sbi.2015.07.007. Epub 2015 Aug 6.

本文引用的文献

2
Combining single-molecule manipulation and single-molecule detection.
Curr Opin Struct Biol. 2014 Oct;28:142-8. doi: 10.1016/j.sbi.2014.08.010. Epub 2014 Oct 17.
3
E pluribus unum, no more: from one crystal, many conformations.
Curr Opin Struct Biol. 2014 Oct;28:56-62. doi: 10.1016/j.sbi.2014.07.005. Epub 2014 Aug 9.
4
Evidence of disorder in biological molecules from single molecule pulling experiments.
Phys Rev Lett. 2014 Apr 4;112(13):138101. doi: 10.1103/PhysRevLett.112.138101. Epub 2014 Mar 31.
5
Structure of giant muscle proteins.
Front Physiol. 2013 Dec 12;4:368. doi: 10.3389/fphys.2013.00368.
6
Mechanics of severing for large microtubule complexes revealed by coarse-grained simulations.
J Chem Phys. 2013 Sep 28;139(12):121926. doi: 10.1063/1.4819817.
7
Impact and progress in small and wide angle X-ray scattering (SAXS and WAXS).
Curr Opin Struct Biol. 2013 Oct;23(5):748-54. doi: 10.1016/j.sbi.2013.06.007. Epub 2013 Jul 5.
8
Integrative structural modeling with small angle X-ray scattering profiles.
BMC Struct Biol. 2012 Jul 16;12:17. doi: 10.1186/1472-6807-12-17.
9
Denaturant-dependent folding of GFP.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17832-8. doi: 10.1073/pnas.1201808109. Epub 2012 Jul 9.
10
Multiscale modeling of the nanomechanics of microtubule protofilaments.
J Phys Chem B. 2012 Jul 26;116(29):8545-55. doi: 10.1021/jp212608f. Epub 2012 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验