Bodmer Nicholas K, Theisen Kelly E, Dima Ruxandra I
Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
Department of Chemistry, University of Cincinnati, Cincinnati, Ohio.
Biophys J. 2015 May 5;108(9):2322-32. doi: 10.1016/j.bpj.2015.03.036.
The titin-telethonin complex, essential for anchoring filaments in the Z-disk of the sarcomere, is composed of immunoglobulin domains. Surprisingly, atomic force microscopy experiments showed that it resists forces much higher than the typical immunoglobulin domain and that the force distribution is unusually broad. To investigate the origin of this behavior, we developed a multiscale simulation approach, combining minimalist and atomistic models (SOP-AT). By following the mechanical response of the complex on experimental timescales, we found that the mechanical stability of titin-telethonin is modulated primarily by the strength of contacts between telethonin and the two titin chains, and secondarily by the timescales of conformational excursions inside telethonin and the pulled titin domains. Importantly, the conformational transitions executed by telethonin in simulations support its proposed role in mechanosensing. Our SOP-AT computational approach thus provides a powerful tool for the exploration of the link between conformational diversity and the broadness of the mechanical response, which can be applied to other multidomain complexes.
肌联蛋白-伴肌动蛋白复合物对于将细丝锚定在肌节的Z盘至关重要,它由免疫球蛋白结构域组成。令人惊讶的是,原子力显微镜实验表明,它能抵抗比典型免疫球蛋白结构域高得多的力,而且力的分布异常广泛。为了研究这种行为的起源,我们开发了一种多尺度模拟方法,结合了极简模型和原子模型(SOP-AT)。通过在实验时间尺度上跟踪复合物的力学响应,我们发现肌联蛋白-伴肌动蛋白的力学稳定性主要由伴肌动蛋白与两条肌联蛋白链之间的接触强度调节,其次由伴肌动蛋白和被拉伸的肌联蛋白结构域内构象偏移的时间尺度调节。重要的是,模拟中伴肌动蛋白执行的构象转变支持了其在机械传感中的作用。因此,我们的SOP-AT计算方法为探索构象多样性与力学响应广度之间的联系提供了一个强大的工具,该工具可应用于其他多结构域复合物。