Suppr超能文献

模式字段的风格约束贝叶斯分类分析结果。

Analytical results on style-constrained bayesian classification of pattern fields.

作者信息

Veeramachaneni Sriharsha, Nagy George

机构信息

Automated Reasoning Systems Division, IRST-Istituto per la Ricerca Scientifica e Tecnologica, Trento, Italy.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Jul;29(7):1280-5. doi: 10.1109/TPAMI.2007.1030.

Abstract

We formalize the notion of style context, which accounts for the increased accuracy of the field classifiers reported in this journal recently. We argue that style context forms the basis of all order-independent field classification schemes. We distinguish between intraclass style, which underlies most adaptive classifiers, and interclass style, which is a manifestation of interpattern dependence between the features of the patterns of a field. We show how style-constrained classifiers can be optimized either for field error (useful for short fields like zip codes) or for singlet error (for long fields, like business letters). We derive bounds on the reduction of error rate with field length and show that the error rate of the optimal style-constrained field classifier converges asymptotically to the error rate of a style-aware Bayesian singlet classifier.

摘要

我们将风格上下文的概念形式化,这解释了本期刊最近报道的字段分类器准确性提高的原因。我们认为风格上下文构成了所有与顺序无关的字段分类方案的基础。我们区分了类内风格(大多数自适应分类器的基础)和类间风格(字段模式特征之间模式依赖的一种表现)。我们展示了如何针对字段错误(对邮政编码等短字段有用)或单例错误(对商业信函等长字段有用)来优化受风格约束的分类器。我们推导了随着字段长度错误率降低的界限,并表明最优风格约束字段分类器的错误率渐近收敛到风格感知贝叶斯单例分类器的错误率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验