Bali Nadia, Mohammad-Djafari Ali
Laboratoire des Signaux et Systèmes, UMR 8506, SUPELEC, Gif-sur-Yvette, France.
IEEE Trans Image Process. 2008 Feb;17(2):217-25. doi: 10.1109/TIP.2007.914227.
The main problems in hyperspectral image analysis are spectral classification, segmentation, and data reduction. In this paper, we propose a Bayesian estimation approach which gives a joint solution for these problems. The problem is modeled as a blind sources separation (BSS). The data are M hyperspectral images and the sources are K < M images which are composed of compact homogeneous regions and have mutually disjoint supports. The set of all these regions cover the total surface of the observed scene. To insure these properties, we propose a hierarchical Markov model for the sources with a common hidden classification field which is modeled via a Potts-Markov field. The joint Bayesian estimation of the hidden variable, sources, and the mixing matrix of the BSS gives a solution for all three problems: spectra classification, segmentation, and data reduction of hyperspectral images. The mean field approximation (MFA) algorithm for the posterior laws is proposed for the effective Bayesian computation. Finally, some results of the application of the proposed methods on simulated and real data are given to illustrate the performance of the proposed method compared to other classical methods, such as PCA and ICA.
高光谱图像分析中的主要问题是光谱分类、分割和数据缩减。在本文中,我们提出了一种贝叶斯估计方法,该方法为这些问题提供了联合解决方案。该问题被建模为盲源分离(BSS)。数据是M幅高光谱图像,源是K < M幅图像,这些图像由紧凑的同质区域组成且具有互不相交的支撑。所有这些区域的集合覆盖了观测场景的整个表面。为确保这些特性,我们为源提出了一种分层马尔可夫模型,该模型具有一个通过Potts - 马尔可夫场建模的公共隐藏分类场。对隐藏变量、源以及BSS的混合矩阵进行联合贝叶斯估计,为高光谱图像的光谱分类、分割和数据缩减这三个问题提供了一个解决方案。针对后验律提出了均值场近似(MFA)算法用于有效的贝叶斯计算。最后,给出了所提方法在模拟数据和真实数据上的一些应用结果,以说明所提方法与其他经典方法(如主成分分析(PCA)和独立成分分析(ICA))相比的性能。