Suppr超能文献

蓝鳍鳉鱼(Lucania goodei)短波长敏感(SWS1和SWS2)色素中的一种新型光谱调谐。

A novel spectral tuning in the short wavelength-sensitive (SWS1 and SWS2) pigments of bluefin killifish (Lucania goodei).

作者信息

Yokoyama Shozo, Takenaka Naomi, Blow Nathan

机构信息

Department of Biology, Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA.

出版信息

Gene. 2007 Jul 1;396(1):196-202. doi: 10.1016/j.gene.2007.03.019. Epub 2007 Apr 14.

Abstract

The molecular bases of spectral tuning in the UV-, violet-, and blue-sensitive pigments are not well understood. Using the in vitro assay, here we show that the SWS1, SWS2-A, and SWS2-B pigments of bluefin killifish (Lucania goodei) have the wavelengths of maximal absorption (lambda(max)'s) of 354, 448, and 397 nm, respectively. The spectral difference between the SWS2-A and SWS2-B pigments is largest among those of all currently known pairs of SWS2 pigments within a species. The SWS1 pigment contains no amino acid replacement at the currently known 25 critical sites and seems to have inherited its UV-sensitivity directly from the vertebrate ancestor. Mutagenesis analyses show that the amino acid differences at sites 44, 46, 94, 97, 109, 116, 118, 265, and 292 of the SWS2-A and SWS2-B pigments explain 80% of their spectral difference. Moreover, the larger the individual effects of amino acid changes on the lambda(max)-shift are, the larger the synergistic effects tend to be generated, revealing a novel mechanism of spectral tuning of visual pigments.

摘要

对紫外线、紫光和蓝光敏感色素的光谱调谐分子基础尚未完全了解。利用体外测定法,我们在此表明,蓝鳍鳉鱼(Lucania goodei)的SWS1、SWS2 - A和SWS2 - B色素的最大吸收波长(λmax)分别为354、448和397纳米。在一个物种内所有目前已知的SWS2色素对中,SWS2 - A和SWS2 - B色素之间的光谱差异最大。SWS1色素在目前已知的25个关键位点没有氨基酸替换,似乎直接从脊椎动物祖先那里继承了其紫外线敏感性。诱变分析表明,SWS2 - A和SWS2 - B色素在第44、46、94、97、109、116、118、265和292位点的氨基酸差异解释了它们80%的光谱差异。此外,氨基酸变化对λmax位移的个体效应越大,协同效应往往就越大,揭示了视觉色素光谱调谐的一种新机制。

相似文献

1
A novel spectral tuning in the short wavelength-sensitive (SWS1 and SWS2) pigments of bluefin killifish (Lucania goodei).
Gene. 2007 Jul 1;396(1):196-202. doi: 10.1016/j.gene.2007.03.019. Epub 2007 Apr 14.
2
The spectral tuning in the short wavelength-sensitive type 2 pigments.
Gene. 2003 Mar 13;306:91-8. doi: 10.1016/s0378-1119(03)00424-4.
3
5
Molecular basis of spectral tuning in the newt short wavelength sensitive visual pigment.
Biochemistry. 2003 May 27;42(20):6025-34. doi: 10.1021/bi020629+.
6
Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.
Gene. 2006 Jan 3;365:95-103. doi: 10.1016/j.gene.2005.09.028. Epub 2005 Dec 15.
9
Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments.
Biochemistry. 2000 Jul 11;39(27):7895-901. doi: 10.1021/bi992776m.
10
Genetic basis of spectral tuning in the violet-sensitive visual pigment of African clawed frog, Xenopus laevis.
Genetics. 2005 Nov;171(3):1153-60. doi: 10.1534/genetics.105.045849. Epub 2005 Aug 3.

引用本文的文献

1
Molecular diversity of protostome non-visual opsin arthropsin.
iScience. 2025 Jun 24;28(7):112989. doi: 10.1016/j.isci.2025.112989. eCollection 2025 Jul 18.
2
Multiple Pathways of Visual Adaptations for Water Column Usage in an Antarctic Adaptive Radiation.
Ecol Evol. 2025 Mar 9;15(3):e70867. doi: 10.1002/ece3.70867. eCollection 2025 Mar.
6
Molecular Evolution of Malacostracan Short Wavelength Sensitive Opsins.
J Mol Evol. 2023 Dec;91(6):806-818. doi: 10.1007/s00239-023-10137-w. Epub 2023 Nov 9.
7
Seeing Picasso: an investigation into the visual system of the triggerfish Rhinecanthus aculeatus.
J Exp Biol. 2022 Apr 1;225(7). doi: 10.1242/jeb.243907. Epub 2022 Apr 8.
9
Short-wavelength-sensitive 2 (Sws2) visual photopigment models combined with atomistic molecular simulations to predict spectral peaks of absorbance.
PLoS Comput Biol. 2020 Oct 21;16(10):e1008212. doi: 10.1371/journal.pcbi.1008212. eCollection 2020 Oct.

本文引用的文献

1
Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays.
Mol Biol Evol. 2006 Aug;23(8):1538-47. doi: 10.1093/molbev/msl014. Epub 2006 May 23.
2
Shortwave visual sensitivity in tree and flying squirrels reflects changes in lifestyle.
Curr Biol. 2006 Feb 7;16(3):R81-3. doi: 10.1016/j.cub.2006.01.045.
3
Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes).
Gene. 2006 Apr 26;371(2):268-78. doi: 10.1016/j.gene.2005.12.005. Epub 2006 Feb 7.
5
Genetic basis of spectral tuning in the violet-sensitive visual pigment of African clawed frog, Xenopus laevis.
Genetics. 2005 Nov;171(3):1153-60. doi: 10.1534/genetics.105.045849. Epub 2005 Aug 3.
6
Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi.
Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5448-53. doi: 10.1073/pnas.0405302102. Epub 2005 Apr 4.
7
Elephants and human color-blind deuteranopes have identical sets of visual pigments.
Genetics. 2005 May;170(1):335-44. doi: 10.1534/genetics.104.039511. Epub 2005 Mar 21.
8
9
Reconstitution of ancestral green visual pigments of zebrafish and molecular mechanism of their spectral differentiation.
Mol Biol Evol. 2005 Apr;22(4):1001-10. doi: 10.1093/molbev/msi086. Epub 2005 Jan 12.
10
Spectral differentiation of blue opsins between phylogenetically close but ecologically distant goldfish and zebrafish.
J Biol Chem. 2005 Mar 11;280(10):9460-6. doi: 10.1074/jbc.M413001200. Epub 2004 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验