Suppr超能文献

延迟压缩载荷对用转化生长因子-β3培养的组织工程软骨构建体的有益作用。

The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3.

作者信息

Lima E G, Bian L, Ng K W, Mauck R L, Byers B A, Tuan R S, Ateshian G A, Hung C T

机构信息

Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027, USA.

出版信息

Osteoarthritis Cartilage. 2007 Sep;15(9):1025-33. doi: 10.1016/j.joca.2007.03.008. Epub 2007 May 10.

Abstract

OBJECTIVE

To determine whether the functional properties of tissue-engineered constructs cultured in a chemically-defined medium supplemented briefly with TGF-beta3 can be enhanced with the application of dynamic deformational loading.

METHODS

Primary immature bovine cells (2-3 months old) were encapsulated in agarose hydrogel (2%, 30 x 10(6)cells/ml) and cultured in chemically-defined medium supplemented for the first 2 weeks with transforming growth factor beta 3 (TGF-beta3) (10 microg/ml). Physiologic deformational loading (1 Hz, 3 h/day, 10% unconfined deformation initially and tapering to 2% peak-to-peak deformation by day 42) was applied either concurrent with or after the period of TGF-beta3 supplementation. Mechanical and biochemical properties were evaluated up to day 56.

RESULTS

Dynamic deformational loading applied concurrently with TGF-beta3 supplementation yielded significantly lower (-90%) overall mechanical properties when compared to free-swelling controls. In contrast, the same loading protocol applied after the discontinuation of the growth factor resulted in significantly increased (+10%) overall mechanical properties relative to free-swelling controls. Equilibrium modulus values reach 1306+/-79 kPa and glycosaminoglycan levels reach 8.7+/-1.6% w.w. during this 8-week period and are similar to host cartilage properties (994+/-280 kPa, 6.3+/-0.9% w.w.).

CONCLUSIONS

An optimal strategy for the functional tissue engineering of articular cartilage, particularly to accelerate construct development, may incorporate sequential application of different growth factors and applied deformational loading.

摘要

目的

确定在短期添加TGF-β3的化学成分明确的培养基中培养的组织工程构建体的功能特性是否可以通过动态变形加载得到增强。

方法

将原代未成熟牛细胞(2 - 3个月大)封装在琼脂糖水凝胶(2%,3×10⁶个细胞/ml)中,并在化学成分明确的培养基中培养,前2周添加转化生长因子β3(TGF-β3)(10μg/ml)。在添加TGF-β3期间或之后施加生理变形加载(1Hz,每天3小时,最初无侧限变形为10%,到第42天逐渐减小至峰峰值变形为2%)。在第56天之前评估力学和生化特性。

结果

与自由膨胀对照组相比,在添加TGF-β3的同时施加动态变形加载产生的整体力学性能显著降低(-90%)。相比之下,在停止生长因子添加后应用相同的加载方案导致相对于自由膨胀对照组,整体力学性能显著增加(+10%)。在这8周期间,平衡模量值达到1306±79kPa,糖胺聚糖水平达到8.7±1.6%(湿重),与宿主软骨特性(994±280kPa,6.3±0.9%(湿重))相似。

结论

关节软骨功能组织工程的最佳策略,特别是为了加速构建体的发育,可能包括顺序应用不同的生长因子和施加变形加载。

相似文献

1
The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3.
Osteoarthritis Cartilage. 2007 Sep;15(9):1025-33. doi: 10.1016/j.joca.2007.03.008. Epub 2007 May 10.
2
The effect of applied compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:779-82. doi: 10.1109/IEMBS.2006.259313.
3
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading.
Osteoarthritis Cartilage. 2003 Dec;11(12):879-90. doi: 10.1016/j.joca.2003.08.006.
6
Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels.
Osteoarthritis Cartilage. 2008 Sep;16(9):1074-82. doi: 10.1016/j.joca.2008.02.005. Epub 2008 Mar 18.
8
A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading.
Ann Biomed Eng. 2004 Jan;32(1):35-49. doi: 10.1023/b:abme.0000007789.99565.42.
10
Transient supplementation of anabolic growth factors rapidly stimulates matrix synthesis in engineered cartilage.
Ann Biomed Eng. 2011 Oct;39(10):2491-500. doi: 10.1007/s10439-011-0356-8. Epub 2011 Jul 21.

引用本文的文献

3
Fibrocartilage hyalinization: A potential therapeutic strategy for articular fibrocartilage.
J Orthop Translat. 2025 May 3;52:313-324. doi: 10.1016/j.jot.2025.04.013. eCollection 2025 May.
4
Cell mediated reactions create TGF-β delivery limitations in engineered cartilage.
Acta Biomater. 2024 Dec;190:178-190. doi: 10.1016/j.actbio.2024.10.032. Epub 2024 Oct 22.
5
inflammatory multi-cellular model of osteoarthritis.
Osteoarthr Cartil Open. 2024 Jan 5;6(1):100432. doi: 10.1016/j.ocarto.2023.100432. eCollection 2024 Mar.
7
"Slow walk" mimetic tensile loading maintains human meniscus tissue resident progenitor cells homeostasis in photocrosslinked gelatin hydrogel.
Bioact Mater. 2023 Feb 8;25:256-272. doi: 10.1016/j.bioactmat.2023.01.025. eCollection 2023 Jul.
8
Toward defining the role of the synovium in mitigating normal articular cartilage wear and tear.
J Biomech. 2023 Feb;148:111472. doi: 10.1016/j.jbiomech.2023.111472. Epub 2023 Jan 26.
9
The role of TGF-beta3 in cartilage development and osteoarthritis.
Bone Res. 2023 Jan 2;11(1):2. doi: 10.1038/s41413-022-00239-4.
10
Effect of viscoelastic properties of cellulose nanocrystal/collagen hydrogels on chondrocyte behaviors.
Front Bioeng Biotechnol. 2022 Aug 11;10:959409. doi: 10.3389/fbioe.2022.959409. eCollection 2022.

本文引用的文献

2
The effects of TGF-beta1 and IGF-I on the biomechanics and cytoskeleton of single chondrocytes.
Osteoarthritis Cartilage. 2006 Dec;14(12):1227-36. doi: 10.1016/j.joca.2006.05.013. Epub 2006 Jul 7.
3
Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity.
Arthritis Res Ther. 2005;7(6):R1338-47. doi: 10.1186/ar1833. Epub 2005 Sep 30.
4
Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures.
J Biomech. 2006;39(8):1489-97. doi: 10.1016/j.jbiomech.2005.03.031. Epub 2005 Jun 28.
5
Stem cell-based composite tissue constructs for regenerative medicine.
Biotechnol Bioeng. 2005 Aug 5;91(3):261-84. doi: 10.1002/bit.20292.
6
Indentation stiffness of repair tissue after autologous chondrocyte transplantation.
Clin Orthop Relat Res. 2005 Apr(433):233-42. doi: 10.1097/01.blo.0000150567.00022.2e.
9
Signaling "cross-talk" between TGF-beta1 and ECM signals in chondrocytic cells.
Cell Signal. 2004 Oct;16(10):1133-40. doi: 10.1016/j.cellsig.2004.03.004.
10
Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds.
J Biomech. 2004 May;37(5):595-604. doi: 10.1016/j.jbiomech.2003.10.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验