Suppr超能文献

动态机械加载利用成熟的犬软骨细胞增强组织工程软骨的功能特性。

Dynamic mechanical loading enhances functional properties of tissue-engineered cartilage using mature canine chondrocytes.

机构信息

Cellular Engineering Laboratory, Department of Biomedical Engineering, Columbia University, Engineering Terrace 351, 1210 Amsteram Ave., New York, NY 10027, USA.

出版信息

Tissue Eng Part A. 2010 May;16(5):1781-90. doi: 10.1089/ten.TEA.2009.0482.

Abstract

OBJECTIVE

The concept of cartilage functional tissue engineering (FTE) has promoted the use of physiologic loading bioreactor systems to cultivate engineered tissues with load-bearing properties. Prior studies have demonstrated that culturing agarose constructs seeded with primary bovine chondrocytes from immature joints, and subjected to dynamic deformation, produced equilibrium compressive properties and proteoglycan content matching the native tissue. In the process of translating these results to an adult canine animal model, it was found that protocols previously successful with immature bovine primary chondrocytes did not produce the same successful outcome when using adult canine primary chondrocytes. The objective of this study was to assess the efficacy of a modified FTE protocol using adult canine chondrocytes seeded in agarose hydrogel and subjected to dynamic loading.

METHOD

Two modes of dynamic loading were applied to constructs using custom bioreactors: unconfined axial compressive deformational loading (DL; 1 Hz, 10% deformation) or sliding contact loading (Slide; 0.5 Hz, 10% deformation). Loading for 3 h daily was initiated on day 0, 14, or 28 (DL0, DL14, DL28, and Slide14).

RESULTS

Constructs with applied loading (both DL and Slide) exhibited significant increases in Young's modulus compared with free-swelling control as early as day 28 in culture (p < 0.05). However, glycosaminoglycan, collagen, and DNA content were not statistically different among the various groups. The modulus values attained for engineered constructs compare favorably with (and exceed in some cases) those of native canine knee (patella groove and condyle) cartilage.

CONCLUSION

Our findings successfully demonstrate an FTE strategy incorporating clinically relevant, adult chondrocytes and gel scaffold for engineering cartilage replacement tissue. These results, using continuous growth factor supplementation, are in contrast to our previously reported studies with immature chondrocytes where the sequential application of dynamic loading after transient transforming growth factor-beta3 application was found to be a superior culture protocol. Sliding, which simulates aspects of joint articulation, has shown promise in promoting engineered tissue development and provides an alternative option for FTE of cartilage constructs to be further explored.

摘要

目的

软骨功能组织工程(FTE)的概念促进了使用生理负荷生物反应器系统来培养具有承载性能的工程组织。先前的研究表明,培养在琼脂糖构建体中接种了来自未成熟关节的原代牛软骨细胞,并施加动态变形,产生了与天然组织相匹配的平衡压缩特性和糖胺聚糖含量。在将这些结果转化为成年犬动物模型的过程中,发现先前使用未成熟牛原代软骨细胞成功的方案,当使用成年犬原代软骨细胞时,并未产生相同的成功结果。本研究的目的是评估使用在琼脂糖水凝胶中接种的成年犬软骨细胞并施加动态负荷的改良 FTE 方案的效果。

方法

使用定制的生物反应器对构建体施加两种模式的动态负荷:无约束轴向压缩变形(DL;1Hz,10%变形)或滑动接触加载(Slide;0.5Hz,10%变形)。从第 0、14 或 28 天(DL0、DL14、DL28 和 Slide14)开始每天加载 3 小时。

结果

施加负载(DL 和 Slide)的构建体与自由膨胀对照相比,在培养的第 28 天(p<0.05)时,杨氏模量显著增加。然而,在各个组之间,糖胺聚糖、胶原和 DNA 含量没有统计学差异。工程构建体获得的模量值与(在某些情况下超过)天然犬膝关节(髌骨槽和髁)软骨相媲美。

结论

我们的研究成功地展示了一种包含临床相关的、成年软骨细胞和凝胶支架的 FTE 策略,用于工程软骨替代组织。这些结果使用持续的生长因子补充,与我们之前使用未成熟软骨细胞的研究结果形成对比,在后者中,动态加载的顺序应用在短暂转化生长因子-β3 应用后被发现是一种更优的培养方案。滑动,模拟关节连接的某些方面,显示出促进工程组织发育的潜力,并为进一步探索软骨构建体的 FTE 提供了替代选择。

相似文献

2
The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3.
Osteoarthritis Cartilage. 2007 Sep;15(9):1025-33. doi: 10.1016/j.joca.2007.03.008. Epub 2007 May 10.
3
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading.
Osteoarthritis Cartilage. 2003 Dec;11(12):879-90. doi: 10.1016/j.joca.2003.08.006.
4
A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading.
Ann Biomed Eng. 2004 Jan;32(1):35-49. doi: 10.1023/b:abme.0000007789.99565.42.
5
The effect of applied compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:779-82. doi: 10.1109/IEMBS.2006.259313.
9
Tensile properties of engineered cartilage formed from chondrocyte- and MSC-laden hydrogels.
Osteoarthritis Cartilage. 2008 Sep;16(9):1074-82. doi: 10.1016/j.joca.2008.02.005. Epub 2008 Mar 18.
10
Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage.
Osteoarthritis Cartilage. 2012 Apr;20(4):288-95. doi: 10.1016/j.joca.2011.12.010. Epub 2012 Jan 10.

引用本文的文献

3
Deciphering cartilage neuro-immune interactions and innervation profile through 3D engineered osteoarthritic micropathophysiological system.
Mater Today Bio. 2025 Jan 13;31:101491. doi: 10.1016/j.mtbio.2025.101491. eCollection 2025 Apr.
4
Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review.
Bioact Mater. 2024 Sep 14;43:1-31. doi: 10.1016/j.bioactmat.2024.09.005. eCollection 2025 Jan.
5
A Systems Approach to Biomechanics, Mechanobiology, and Biotransport.
J Biomech Eng. 2024 Apr 1;146(4). doi: 10.1115/1.4064547.
6
Biomechanical Forces in the Tissue Engineering and Regeneration of Shoulder, Hip, Knee, and Ankle Joints.
J Biotechnol Biomed. 2023;6(4):491-500. doi: 10.26502/jbb.2642-91280111. Epub 2023 Oct 19.
8
9
Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering.
Biomater Biosyst. 2021 Nov 22;4:100030. doi: 10.1016/j.bbiosy.2021.100030. eCollection 2021 Dec.

本文引用的文献

1
The impact of low levels of collagen IX and pyridinoline on the mechanical properties of in vitro engineered cartilage.
Biomaterials. 2009 Feb;30(5):814-21. doi: 10.1016/j.biomaterials.2008.10.042. Epub 2008 Nov 25.
2
Dynamic loading of deformable porous media can induce active solute transport.
J Biomech. 2008 Nov 14;41(15):3152-7. doi: 10.1016/j.jbiomech.2008.08.023. Epub 2008 Oct 14.
3
Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years.
J Bone Joint Surg Br. 2008 May;90(5):597-604. doi: 10.1302/0301-620X.90B5.20360.
4
5
Interaction of cartilage oligomeric matrix protein/thrombospondin 5 with aggrecan.
J Biol Chem. 2007 Aug 24;282(34):24591-8. doi: 10.1074/jbc.M611390200. Epub 2007 Jun 22.
6
The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3.
Osteoarthritis Cartilage. 2007 Sep;15(9):1025-33. doi: 10.1016/j.joca.2007.03.008. Epub 2007 May 10.
7
Different response of articular chondrocyte subpopulations to surface motion.
Osteoarthritis Cartilage. 2007 Sep;15(9):1034-41. doi: 10.1016/j.joca.2007.03.001. Epub 2007 Apr 17.
8
Chondroitin sulfate reduces the friction coefficient of articular cartilage.
J Biomech. 2007;40(8):1847-54. doi: 10.1016/j.jbiomech.2006.07.007. Epub 2006 Nov 3.
9
Dynamic shear stimulation of bovine cartilage biosynthesis of proteoglycan 4.
Arthritis Rheum. 2006 Jun;54(6):1888-96. doi: 10.1002/art.21831.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验