Vasconcellos Marne C, Rosa Renato M, Machado Miriana S, Villela Izabel V, Crotti Antônio Eduardo Miller, Lopes João Luis Callegari, Pessoa Cláudia, de Moraes Manoel Odorico, Lopes Norberto Peporine, Costa-Lotufo Letícia V, Saffi Jenifer, Henriques João Antônio Pegas
Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Caixa Postal-3157, 60430-270 Fortaleza, Ceará, Brazil.
Mutat Res. 2007 Jul 10;631(1):16-25. doi: 10.1016/j.mrgentox.2007.04.002. Epub 2007 Apr 7.
Sesquiterpene lactones (SLs) present a wide range of pharmacological activities. The aim of our study was to investigate the genotoxicity of 15-deoxygoyazensolide using the Salmonella/microsome assay and the yeast Saccharomyces cerevisiae. We also investigated the nature of induced DNA damage using yeast strains defective in DNA repair pathways, such as nucleotide excision repair (RAD3), error prone repair (RAD6), and recombinational repair (RAD52), and in DNA metabolism, such as topoisomerase mutants. 15-deoxygoyasenzolide was not mutagenic in Salmonella typhimurium, but it was mutagenic in S. cerevisiae. The hypersensitivity of the rad52 mutant suggests that recombinational repair is critical for processing lesions resulting from 15-deoxygoyazensolide-induced DNA damage, whereas excision repair and mutagenic systems does not appear to be primarily involved. Top 1 defective yeast strain was highly sensitive to the cytotoxic activity of 15-deoxygoyazensolide, suggesting a possible involvement of this enzyme in the reversion of the putative complex formation between DNA and this SL, possibly due to intercalation. Moreover, the treatment with this lactone caused dose-dependent glutathione depletion, generating pro-oxidant status which facilitates oxidative DNA damage, particularly DNA breaks repaired by the recombinational system ruled by RAD52 in yeast. Consistent with this finding, the absence of Top1 directly affects chromatin remodeling, allowing repair factors to access oxidative damage, which explains the high sensitivity to top1 strain. In summary, the present study shows that 15-deoxygoyazensolide is mutagenic in yeast due to the possible intercalation effect, in addition to the pro-oxidant status that exacerbates oxidative DNA damage.
倍半萜内酯(SLs)具有广泛的药理活性。我们研究的目的是使用沙门氏菌/微粒体试验和酿酒酵母来研究15-脱氧戈亚仙内酯的遗传毒性。我们还使用在DNA修复途径(如核苷酸切除修复(RAD3)、易错修复(RAD6)和重组修复(RAD52))以及DNA代谢(如拓扑异构酶突变体)方面存在缺陷的酵母菌株,研究了诱导的DNA损伤的性质。15-脱氧戈亚仙内酯在鼠伤寒沙门氏菌中不具有致突变性,但在酿酒酵母中具有致突变性。rad52突变体的超敏性表明重组修复对于处理由15-脱氧戈亚仙内酯诱导的DNA损伤所产生的损伤至关重要,而切除修复和诱变系统似乎并非主要参与其中。Top 1缺陷型酵母菌株对15-脱氧戈亚仙内酯的细胞毒性活性高度敏感,这表明该酶可能参与了DNA与这种SL之间假定复合物形成的逆转,可能是由于嵌入作用。此外,用这种内酯处理会导致剂量依赖性的谷胱甘肽耗竭,产生促氧化状态,这有利于氧化性DNA损伤,特别是由酵母中RAD52所调控的重组系统修复的DNA断裂。与这一发现一致,Top1的缺失直接影响染色质重塑,使修复因子能够接触到氧化性损伤,这解释了对top1菌株的高敏感性。总之,本研究表明,除了加剧氧化性DNA损伤的促氧化状态外,15-脱氧戈亚仙内酯由于可能的嵌入作用在酵母中具有致突变性。