Suppr超能文献

开发一种基于酵母的高通量检测方法用于检测代谢活化的基因毒素。

Development of a highthroughput yeast-based assay for detection of metabolically activated genotoxins.

作者信息

Liu Xuemei, Kramer Jeffrey A, Swaffield Jonathan C, Hu Yi, Chai Guixuan, Wilson Alan G E

机构信息

Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals, Inc., The Woodlands, TX 77381, USA.

出版信息

Mutat Res. 2008 May 31;653(1-2):63-9. doi: 10.1016/j.mrgentox.2008.03.006. Epub 2008 Apr 1.

Abstract

The potential genotoxicity of drug candidates is a serious concern during drug development. Therefore, it is important to assess the potential genotoxicity and mutagenicity of a compound early in the discovery phase of drug development. AMES Salmonella assay is the most widely used assay for the assessment of mutagenicity and genotoxicity. However, the AMES assay is not readily adaptable to highthroughput screening and several strains of Salmonella must be employed to ensure that different types of DNA damage can be studied. Therefore, an additional robust highthroughput genotoxicity screen would be of significant value in the early detection and elimination of genotoxicity. The complexity of DNA damage requires numerous cellular pathways, thus using single model organism to predict genotoxicity in early stage is challenging. Another critical component of such screens is that they incorporate the capability of metabolic activation to ensure that no genotoxic metabolites are generated. We have developed a novel highthroughput reporter assay for DNA repair that detects genotoxicity, and which incorporates metabolic activation. The assay has a low compound requirement as compared to Ames, and relies upon two different reporter genes cotransfected into a yeast strain. The gene encoding Renilla luciferase is fused to the constitutive 3-phosphoglycerate kinase (PGK1) promoter and integrated into the yeast genome to provide a control for cell numbers. The firefly luciferase gene is fused to the RAD51 (bacterial RecA homolog) promoter and used to report an increase in DNA repair activity. A dual luciferase assay is performed by measuring the firefly and Renilla luciferase activities in the same sample. The result is expressed as the ratio of the two luciferase activities; changes from the base level (control) are interpreted as induction of the RAD51 promoter and evidence of DNA repair activity in eukaryote cells due to DNA damage. The yeast dual luciferase reporter has been characterized with and without S-9 activation using positive and negative control agents. This assay is efficient, requires little time and low amounts of compound. The assay is compatible with metabolic activation, adaptable to a highthroughput platform, and yields data that accurately and reproducibly detects DNA damage. Whereas the normal yeast cell wall, plasma membrane composition and the presence of active transporters can prevent the entry or persistence of some compounds internally in yeast cells, our assay did show concordance with regulatory mutagenicity assays, many of which require metabolic activation and are poorly detected by bacterial mutagenicity assays. Although there were false negative results, in our hands this assay performs as well as or better than other commercially available genetox assays. Furthermore, the RAD51 gene is strongly inducible by homologous intrachromosomal recombination; thus this assay may provide a means to detect clastogens. The RAD51 promoter fused dual luciferase assay represents a valuable addition to the armamentarium for the early detection of genotoxic compounds.

摘要

在药物研发过程中,候选药物的潜在遗传毒性是一个严重问题。因此,在药物研发的发现阶段早期评估化合物的潜在遗传毒性和致突变性非常重要。艾姆斯沙门氏菌试验是评估致突变性和遗传毒性最广泛使用的试验。然而,艾姆斯试验不易适应高通量筛选,并且必须使用几种沙门氏菌菌株以确保能够研究不同类型的DNA损伤。因此,另一种强大的高通量遗传毒性筛选方法对于早期检测和消除遗传毒性具有重要价值。DNA损伤的复杂性需要众多细胞途径,因此使用单一模式生物在早期预测遗传毒性具有挑战性。此类筛选的另一个关键要素是它们具备代谢活化能力,以确保不会产生遗传毒性代谢物。我们开发了一种用于DNA修复的新型高通量报告基因检测方法,该方法可检测遗传毒性,并包含代谢活化过程。与艾姆斯试验相比,该检测方法对化合物的需求量较低,并且依赖于共转染到酵母菌株中的两种不同报告基因。编码海肾荧光素酶的基因与组成型3-磷酸甘油酸激酶(PGK1)启动子融合,并整合到酵母基因组中,以作为细胞数量的对照。萤火虫荧光素酶基因与RAD51(细菌RecA同源物)启动子融合,并用于报告DNA修复活性的增加。通过测量同一样品中的萤火虫和海肾荧光素酶活性来进行双荧光素酶检测。结果以两种荧光素酶活性的比值表示;与基础水平(对照)的变化被解释为RAD51启动子的诱导以及真核细胞中由于DNA损伤导致的DNA修复活性的证据。使用阳性和阴性对照剂对酵母双荧光素酶报告基因进行了有无S-9活化的表征。该检测方法高效、耗时少且化合物用量低。该检测方法与代谢活化兼容,适用于高通量平台,并能产生准确且可重复地检测DNA损伤的数据。虽然正常的酵母细胞壁、质膜组成以及活性转运蛋白的存在可能会阻止某些化合物进入酵母细胞内部或在其中持续存在,但我们的检测方法确实与监管致突变性检测结果一致,其中许多检测需要代谢活化,而细菌致突变性检测对其检测效果不佳。尽管存在假阴性结果,但在我们手中,该检测方法的表现与其他市售遗传毒性检测方法相当或更好。此外,RAD51基因可通过同源染色体内重组强烈诱导;因此该检测方法可能提供一种检测断裂剂的手段。RAD51启动子融合双荧光素酶检测方法是早期检测遗传毒性化合物的工具库中的一项有价值的补充。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验