Suppr超能文献

柴油-煤油混合物激发发射矩阵荧光光谱数据的多元分析方法:一项比较研究。

Multivariate methods on the excitation emission matrix fluorescence spectroscopic data of diesel-kerosene mixtures: a comparative study.

作者信息

Divya O, Mishra Ashok K

机构信息

Department of Chemistry, Indian Institute of Technology-Madras, Chennai 600036, India.

出版信息

Anal Chim Acta. 2007 May 29;592(1):82-90. doi: 10.1016/j.aca.2007.03.079. Epub 2007 Apr 13.

Abstract

Quantitative determination of kerosene fraction present in diesel has been carried out based on excitation emission matrix fluorescence (EEMF) along with parallel factor analysis (PARAFAC) and N-way partial least squares regression (N-PLS). EEMF is a simple, sensitive and nondestructive method suitable for the analysis of multifluorophoric mixtures. Calibration models consisting of varying compositions of diesel and kerosene were constructed and their validation was carried out using leave-one-out cross validation method. The accuracy of the model was evaluated through the root mean square error of prediction (RMSEP) for the PARAFAC, N-PLS and unfold PLS methods. N-PLS was found to be a better method compared to PARAFAC and unfold PLS method because of its low RMSEP values.

摘要

基于激发发射矩阵荧光(EEMF)以及平行因子分析(PARAFAC)和N路偏最小二乘回归(N-PLS),对柴油中煤油馏分进行了定量测定。EEMF是一种简单、灵敏且无损的方法,适用于多荧光团混合物的分析。构建了由不同柴油和煤油组成的校准模型,并使用留一法交叉验证方法对其进行验证。通过PARAFAC、N-PLS和展开PLS方法的预测均方根误差(RMSEP)来评估模型的准确性。由于RMSEP值较低,发现N-PLS是一种比PARAFAC和展开PLS方法更好的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验