Palanivel Rengasamy, Fang Xiangping, Park Min, Eguchi Megumi, Pallan Shelley, De Girolamo Sabrina, Liu Ying, Wang Yu, Xu Aimin, Sweeney Gary
Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3.
Cardiovasc Res. 2007 Jul 1;75(1):148-57. doi: 10.1016/j.cardiores.2007.04.011. Epub 2007 Apr 21.
Our aim was to investigate the regulation of glucose and fatty acid metabolism in cardiomyocytes by the globular (gAd) and full-length (fAd) forms of adiponectin.
We produced fAd (consisting of high, medium and low molecular weight oligomers) in a mammalian expression system and gAd in bacteria. These were used to treat primary neonatal rat cardiomyocytes (up to 48 h), and we employed 3H- or 14C-labeled substrates to monitor glucose uptake and subsequent metabolism via oxidation, glycogen synthesis or lactate production and fatty acid uptake and oxidation. Enzymatic assay for acetyl CoA carboxylase activity was employed, and protein phosphorylation and expression was determined by immunoblotting cell lysates. The role of adiponectin receptor (AdipoR) isoforms was determined via siRNA-mediated knockdown.
There was an initial (1 h) increase in glucose uptake and oxidation in response to gAd or fAd. Fatty acid uptake was stimulated by gAd or fAd, and by 24 h a decrease in acetyl CoA carboxylase activity and elevated fatty acid oxidation were observed. After 48 h increased fatty acid oxidation correlated with decreased glucose oxidation and pyruvate dehydrogenase activity, while glycogen synthesis and lactate production increased. Both gAd and fAd elicited phosphorylation of AMP kinase, insulin receptor substrate-1, Akt and glycogen synthase kinase-3beta. Knockdown of AdipoR1 or AdipoR2 attenuated the effect of both gAd and fAd on fatty acid uptake and oxidation. Only AdipoR1 knockdown prevented the ability of gAd (1 h) to increase glucose uptake and oxidation; however, reducing either AdipoR1 or AdipoR2 expression attenuated the long-term (24 h) effects of gAd.
These results clearly demonstrate that gAd and fAd mediate distinct and time-dependent effects on cardiomyocyte energy metabolism via AdipoR1 and AdipoR2.
我们的目的是研究球形脂联素(gAd)和全长脂联素(fAd)对心肌细胞葡萄糖和脂肪酸代谢的调节作用。
我们在哺乳动物表达系统中制备了fAd(由高分子量、中分子量和低分子量寡聚体组成),并在细菌中制备了gAd。将它们用于处理原代新生大鼠心肌细胞(长达48小时),我们使用3H或14C标记的底物来监测葡萄糖摄取以及随后通过氧化、糖原合成或乳酸生成的代谢过程,以及脂肪酸摄取和氧化。采用乙酰辅酶A羧化酶活性的酶促测定法,并通过免疫印迹细胞裂解物来测定蛋白质磷酸化和表达。通过小干扰RNA(siRNA)介导的敲低来确定脂联素受体(AdipoR)亚型的作用。
gAd或fAd作用后,葡萄糖摄取和氧化最初(1小时)增加。gAd或fAd刺激脂肪酸摄取,到24小时时观察到乙酰辅酶A羧化酶活性降低且脂肪酸氧化增加。48小时后,脂肪酸氧化增加与葡萄糖氧化和丙酮酸脱氢酶活性降低相关,而糖原合成和乳酸生成增加。gAd和fAd均引起AMP激酶、胰岛素受体底物-1、Akt和糖原合酶激酶-3β的磷酸化。敲低AdipoR1或AdipoR2减弱了gAd和fAd对脂肪酸摄取和氧化的作用。只有敲低AdipoR1才能阻止gAd(1小时)增加葡萄糖摄取和氧化的能力;然而,降低AdipoR1或AdipoR2的表达都会减弱gAd的长期(24小时)作用。
这些结果清楚地表明,gAd和fAd通过AdipoR1和AdipoR2对心肌细胞能量代谢介导不同的、时间依赖性的作用。