de Wijn Astrid S, Kantz Holger
Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):046214. doi: 10.1103/PhysRevE.75.046214. Epub 2007 Apr 30.
The bouncing-ball billiard is a low-dimensional system with which transport properties of real physical systems can be studied theoretically. We study the bouncing-ball billiard with nonconvex scatterers and small slopes. We show that between the horizontal and vertical motion there is a separation of time scales, which is controlled by the slope of the billiard. We apply the theory of time-scale separation developed by Kantz Physica D 187, 200 (2004). If the vertical motion is chaotic, the horizontal motion is diffusive, but if the vertical motion is (quasi)periodic, there is no diffusion. We confirm the results with numerical simulations. Hence, the order-chaos transition in the vertical degrees of freedom translates into a localization-delocalization transition for the horizontal motion.
弹跳球台球是一种低维系统,通过它可以从理论上研究真实物理系统的输运性质。我们研究了具有非凸散射体和小斜率的弹跳球台球。我们表明,在水平运动和垂直运动之间存在时间尺度分离,这由台球的斜率控制。我们应用了坎茨在《物理学D》187卷,200页(2004年)中发展的时间尺度分离理论。如果垂直运动是混沌的,水平运动就是扩散性的,但如果垂直运动是(准)周期性的,就不存在扩散。我们通过数值模拟证实了这些结果。因此,垂直自由度中的有序 - 混沌转变转化为水平运动的局域化 - 非局域化转变。