Department of Mathematics and Statistics, McGill University, Montreal, Quebec H3A0B9, Canada.
Chaos. 2013 Mar;23(1):013115. doi: 10.1063/1.4790840.
In a set of experiments, Couder et al. demonstrate that an oscillating fluid bed may propagate a bouncing droplet through the guidance of the surface waves. I present a dynamical systems model, in the form of an iterative map, for a droplet on an oscillating bath. I examine the droplet bifurcation from bouncing to walking, and prescribe general requirements for the surface wave to support stable walking states. I show that in addition to walking, there is a region of large forcing that may support the chaotic motion of the droplet. Using the map, I then investigate the droplet trajectories in a square (billiard ball) domain. I show that in large domains, the long time trajectories are either non-periodic dense curves or approach a quasiperiodic orbit. In contrast, in small domains, at low forcing, trajectories tend to approach an array of circular attracting sets. As the forcing increases, the attracting sets break down and the droplet travels throughout space.
在一系列实验中,Couder 等人证明,通过表面波的引导,振荡流床可以使弹跳液滴传播。我提出了一个液滴在振荡浴中的动力学系统模型,其形式为迭代映射。我研究了液滴从弹跳到行走的分岔,并规定了表面波支持稳定行走状态的一般要求。我表明,除了行走之外,还有一个较大的驱动力区域可能支持液滴的混沌运动。然后,我使用该映射研究了方形(弹球)域中的液滴轨迹。我表明,在大域中,长时间轨迹要么是无周期密集曲线,要么接近准周期轨道。相比之下,在小域中,在低驱动力下,轨迹往往会接近一系列圆形吸引集。随着驱动力的增加,吸引集崩溃,液滴在整个空间中移动。