Suppr超能文献

微小RNA检测与靶标预测:计算方法与实验方法的整合

MicroRNA detection and target prediction: integration of computational and experimental approaches.

作者信息

Chaudhuri Keya, Chatterjee Raghunath

机构信息

Molecular & Human Genetics Division, Indian Institute of Chemical Biology, Kolkata, India.

出版信息

DNA Cell Biol. 2007 May;26(5):321-37. doi: 10.1089/dna.2006.0549.

Abstract

In recent years, microRNAs (miRNAs), a class of 19-25 nucleotides noncoding RNAs, have been shown to play a major role in gene regulation across a broad range of metazoans and are important for a diverse biological functions. These miRNAs are involved in the regulation of protein expression primarily by binding to one or more target sites on an mRNA transcript and causing cleavage or repression of translation. Computer-based approaches for miRNA gene identification and miRNA target prediction are being considered as indispensable in miRNA research. Similarly, effective experimental techniques validating in silico predictions are crucial to the testing and finetuning of computational algorithms. Iterative interactions between in silico and experimental methods are now playing a central role in the biology of miRNAs. In this review, we summarize the various computational methods for identification of miRNAs and their targets as well as the technologies that have been developed to validate the predictions.

摘要

近年来,微小RNA(miRNA)是一类由19至25个核苷酸组成的非编码RNA,已被证明在广泛的后生动物中基因调控方面发挥着主要作用,并且对于多种生物学功能至关重要。这些miRNA主要通过与mRNA转录本上的一个或多个靶位点结合并导致翻译的切割或抑制来参与蛋白质表达的调控。基于计算机的miRNA基因识别和miRNA靶标预测方法在miRNA研究中被视为不可或缺。同样,验证计算机模拟预测的有效实验技术对于计算算法的测试和微调至关重要。计算机模拟方法与实验方法之间的迭代相互作用现在在miRNA生物学中起着核心作用。在本综述中,我们总结了用于识别miRNA及其靶标的各种计算方法以及为验证预测而开发的技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验