Yoon Sungroh, De Micheli Giovanni
Computer Systems Laboratory, Stanford University, CA 94305, USA.
Birth Defects Res C Embryo Today. 2006 Jun;78(2):118-28. doi: 10.1002/bdrc.20067.
One of the most important advances in biology in recent years may be the discovery of RNAs that can regulate gene expression. As one kind of such functional noncoding RNAs, microRNAs (miRNAs) form a class of endogenous 19-23-nucleotide RNAs that can have important regulatory roles in animals and plants by targeting transcripts for cleavage or translational repression. Since the discovery of the very first miRNAs, computational methods have been an invaluable tool that can complement experimental approaches to understand the biology of miRNAs. Most computational approaches associated with miRNA research can be classified into two broad categories, namely miRNA gene identification and miRNA target prediction. In this review, we summarize the principles of in silico prediction of miRNAs and their targets, and provide a comprehensive survey of specific methods that have been proposed in the field.
近年来生物学领域最重要的进展之一可能是发现了能够调控基因表达的RNA。作为这类功能性非编码RNA中的一种,微小RNA(miRNA)形成了一类内源性的19 - 23个核苷酸的RNA,它们可通过靶向转录本进行切割或翻译抑制,在动植物中发挥重要的调控作用。自从首个miRNA被发现以来,计算方法一直是一种非常有价值的工具,可补充实验方法来理解miRNA的生物学特性。与miRNA研究相关的大多数计算方法可大致分为两大类,即miRNA基因鉴定和miRNA靶标预测。在本综述中,我们总结了miRNA及其靶标的计算机预测原理,并对该领域已提出的具体方法进行了全面综述。