Suppr超能文献

在系统性筛查项目中,自动进行“患病/未患病”分级对糖尿病视网膜病变的疗效。

The efficacy of automated "disease/no disease" grading for diabetic retinopathy in a systematic screening programme.

作者信息

Philip S, Fleming A D, Goatman K A, Fonseca S, McNamee P, Scotland G S, Prescott G J, Sharp P F, Olson J A

机构信息

Biomedical Physics and Grampian Retinal Screening Programme, University of Aberdeen, Foresterhill, Aberdeen.

出版信息

Br J Ophthalmol. 2007 Nov;91(11):1512-7. doi: 10.1136/bjo.2007.119453. Epub 2007 May 15.

Abstract

AIM

To assess the efficacy of automated "disease/no disease" grading for diabetic retinopathy within a systematic screening programme.

METHODS

Anonymised images were obtained from consecutive patients attending a regional primary care based diabetic retinopathy screening programme. A training set of 1067 images was used to develop automated grading algorithms. The final software was tested using a separate set of 14 406 images from 6722 patients. The sensitivity and specificity of manual and automated systems operating as "disease/no disease" graders (detecting poor quality images and any diabetic retinopathy) were determined relative to a clinical reference standard.

RESULTS

The reference standard classified 8.2% of the patients as having ungradeable images (technical failures) and 62.5% as having no retinopathy. Detection of technical failures or any retinopathy was achieved by manual grading with 86.5% sensitivity (95% confidence interval 85.1 to 87.8) and 95.3% specificity (94.6 to 95.9) and by automated grading with 90.5% sensitivity (89.3 to 91.6) and 67.4% specificity (66.0 to 68.8). Manual and automated grading detected 99.1% and 97.9%, respectively, of patients with referable or observable retinopathy/maculopathy. Manual and automated grading detected 95.7% and 99.8%, respectively, of technical failures.

CONCLUSION

Automated "disease/no disease" grading of diabetic retinopathy could safely reduce the burden of grading in diabetic retinopathy screening programmes.

摘要

目的

评估在系统性筛查项目中糖尿病视网膜病变自动“患病/未患病”分级的效果。

方法

从参加基于地区初级保健的糖尿病视网膜病变筛查项目的连续患者中获取匿名图像。使用1067张图像的训练集来开发自动分级算法。最终软件使用来自6722名患者的另外14406张图像进行测试。相对于临床参考标准,确定了作为“患病/未患病”分级器(检测低质量图像和任何糖尿病视网膜病变)的手动和自动系统的敏感性和特异性。

结果

参考标准将8.2%的患者分类为图像不可分级(技术故障),62.5%的患者分类为没有视网膜病变。通过手动分级检测技术故障或任何视网膜病变的敏感性为86.5%(95%置信区间85.1至87.8),特异性为95.3%(94.6至95.9);通过自动分级检测的敏感性为90.5%(89.3至91.6),特异性为67.4%(66.0至68.8)。手动和自动分级分别检测出99.1%和97.9%的具有可转诊或可观察到的视网膜病变/黄斑病变的患者。手动和自动分级分别检测出95.7%和99.8%的技术故障。

结论

糖尿病视网膜病变的自动“患病/未患病”分级可以安全地减轻糖尿病视网膜病变筛查项目中的分级负担。

相似文献

1
The efficacy of automated "disease/no disease" grading for diabetic retinopathy in a systematic screening programme.
Br J Ophthalmol. 2007 Nov;91(11):1512-7. doi: 10.1136/bjo.2007.119453. Epub 2007 May 15.
3
Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders.
Ophthalmology. 2017 Mar;124(3):343-351. doi: 10.1016/j.ophtha.2016.11.014. Epub 2016 Dec 23.
4
Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy.
Br J Ophthalmol. 2010 Jun;94(6):712-9. doi: 10.1136/bjo.2008.151126. Epub 2009 Dec 3.
5
Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients.
Br J Ophthalmol. 2021 May;105(5):723-728. doi: 10.1136/bjophthalmol-2020-316594. Epub 2020 Jun 30.
7
Cost-effectiveness of implementing automated grading within the national screening programme for diabetic retinopathy in Scotland.
Br J Ophthalmol. 2007 Nov;91(11):1518-23. doi: 10.1136/bjo.2007.120972. Epub 2007 Jun 21.
8
The role of haemorrhage and exudate detection in automated grading of diabetic retinopathy.
Br J Ophthalmol. 2010 Jun;94(6):706-11. doi: 10.1136/bjo.2008.149807. Epub 2009 Aug 5.
9
Deep learning detection of diabetic retinopathy in Scotland's diabetic eye screening programme.
Br J Ophthalmol. 2024 Jun 20;108(7):984-988. doi: 10.1136/bjo-2023-323395.

引用本文的文献

1
Deep learning for enhanced prediction of diabetic retinopathy: a comparative study on the diabetes complications data set.
Front Med (Lausanne). 2025 Jun 16;12:1591832. doi: 10.3389/fmed.2025.1591832. eCollection 2025.
4
Teleophthalmology and retina: a review of current tools, pathways and services.
Int J Retina Vitreous. 2023 Dec 5;9(1):76. doi: 10.1186/s40942-023-00502-8.
5
CHILDSTAR: CHIldren Living With Diabetes See and Thrive with AI Review.
Clin Med Insights Endocrinol Diabetes. 2023 Oct 9;16:11795514231203867. doi: 10.1177/11795514231203867. eCollection 2023.
6
An effective and comprehensible method to detect and evaluate retinal damage due to diabetes complications.
PeerJ Comput Sci. 2023 Sep 26;9:e1585. doi: 10.7717/peerj-cs.1585. eCollection 2023.
8
Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment.
Ophthalmol Ther. 2023 Jun;12(3):1419-1437. doi: 10.1007/s40123-023-00691-3. Epub 2023 Mar 2.
9
Test accuracy of artificial intelligence-based grading of fundus images in diabetic retinopathy screening: A systematic review.
J Med Screen. 2023 Sep;30(3):97-112. doi: 10.1177/09691413221144382. Epub 2023 Jan 9.
10
Prediction of postoperative infection in elderly using deep learning-based analysis: an observational cohort study.
Aging Clin Exp Res. 2023 Mar;35(3):639-647. doi: 10.1007/s40520-022-02325-3. Epub 2023 Jan 4.

本文引用的文献

1
Automatic detection of retinal anatomy to assist diabetic retinopathy screening.
Phys Med Biol. 2007 Jan 21;52(2):331-45. doi: 10.1088/0031-9155/52/2/002. Epub 2006 Dec 21.
2
Automated microaneurysm detection using local contrast normalization and local vessel detection.
IEEE Trans Med Imaging. 2006 Sep;25(9):1223-32. doi: 10.1109/tmi.2006.879953.
3
Automated assessment of diabetic retinal image quality based on clarity and field definition.
Invest Ophthalmol Vis Sci. 2006 Mar;47(3):1120-5. doi: 10.1167/iovs.05-1155.
6
Automatic detection of red lesions in digital color fundus photographs.
IEEE Trans Med Imaging. 2005 May;24(5):584-92. doi: 10.1109/TMI.2005.843738.
7
Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.
Diabetes Care. 2004 May;27(5):1047-53. doi: 10.2337/diacare.27.5.1047.
8
Causes of blindness and visual impairment in the West of Scotland.
Eye (Lond). 2004 Mar;18(3):257-61. doi: 10.1038/sj.eye.6700606.
10
Grading and disease management in national screening for diabetic retinopathy in England and Wales.
Diabet Med. 2003 Dec;20(12):965-71. doi: 10.1111/j.1464-5491.2003.01077.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验