Philip S, Fleming A D, Goatman K A, Fonseca S, McNamee P, Scotland G S, Prescott G J, Sharp P F, Olson J A
Biomedical Physics and Grampian Retinal Screening Programme, University of Aberdeen, Foresterhill, Aberdeen.
Br J Ophthalmol. 2007 Nov;91(11):1512-7. doi: 10.1136/bjo.2007.119453. Epub 2007 May 15.
To assess the efficacy of automated "disease/no disease" grading for diabetic retinopathy within a systematic screening programme.
Anonymised images were obtained from consecutive patients attending a regional primary care based diabetic retinopathy screening programme. A training set of 1067 images was used to develop automated grading algorithms. The final software was tested using a separate set of 14 406 images from 6722 patients. The sensitivity and specificity of manual and automated systems operating as "disease/no disease" graders (detecting poor quality images and any diabetic retinopathy) were determined relative to a clinical reference standard.
The reference standard classified 8.2% of the patients as having ungradeable images (technical failures) and 62.5% as having no retinopathy. Detection of technical failures or any retinopathy was achieved by manual grading with 86.5% sensitivity (95% confidence interval 85.1 to 87.8) and 95.3% specificity (94.6 to 95.9) and by automated grading with 90.5% sensitivity (89.3 to 91.6) and 67.4% specificity (66.0 to 68.8). Manual and automated grading detected 99.1% and 97.9%, respectively, of patients with referable or observable retinopathy/maculopathy. Manual and automated grading detected 95.7% and 99.8%, respectively, of technical failures.
Automated "disease/no disease" grading of diabetic retinopathy could safely reduce the burden of grading in diabetic retinopathy screening programmes.
评估在系统性筛查项目中糖尿病视网膜病变自动“患病/未患病”分级的效果。
从参加基于地区初级保健的糖尿病视网膜病变筛查项目的连续患者中获取匿名图像。使用1067张图像的训练集来开发自动分级算法。最终软件使用来自6722名患者的另外14406张图像进行测试。相对于临床参考标准,确定了作为“患病/未患病”分级器(检测低质量图像和任何糖尿病视网膜病变)的手动和自动系统的敏感性和特异性。
参考标准将8.2%的患者分类为图像不可分级(技术故障),62.5%的患者分类为没有视网膜病变。通过手动分级检测技术故障或任何视网膜病变的敏感性为86.5%(95%置信区间85.1至87.8),特异性为95.3%(94.6至95.9);通过自动分级检测的敏感性为90.5%(89.3至91.6),特异性为67.4%(66.0至68.8)。手动和自动分级分别检测出99.1%和97.9%的具有可转诊或可观察到的视网膜病变/黄斑病变的患者。手动和自动分级分别检测出95.7%和99.8%的技术故障。
糖尿病视网膜病变的自动“患病/未患病”分级可以安全地减轻糖尿病视网膜病变筛查项目中的分级负担。