Suppr超能文献

自动化算法与手动分级检测可转诊糖尿病视网膜病变的成本与后果。

Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy.

机构信息

Health Economics Research Unit, University of Aberdeen, Foresterhill, Aberdeen, UK.

出版信息

Br J Ophthalmol. 2010 Jun;94(6):712-9. doi: 10.1136/bjo.2008.151126. Epub 2009 Dec 3.

Abstract

AIMS

To assess the cost-effectiveness of an improved automated grading algorithm for diabetic retinopathy against a previously described algorithm, and in comparison with manual grading.

METHODS

Efficacy of the alternative algorithms was assessed using a reference graded set of images from three screening centres in Scotland (1253 cases with observable/referable retinopathy and 6333 individuals with mild or no retinopathy). Screening outcomes and grading and diagnosis costs were modelled for a cohort of 180 000 people, with prevalence of referable retinopathy at 4%. Algorithm (b), which combines image quality assessment with detection algorithms for microaneurysms (MA), blot haemorrhages and exudates, was compared with a simpler algorithm (a) (using image quality assessment and MA/dot haemorrhage (DH) detection), and the current practice of manual grading.

RESULTS

Compared with algorithm (a), algorithm (b) would identify an additional 113 cases of referable retinopathy for an incremental cost of pound 68 per additional case. Compared with manual grading, automated grading would be expected to identify between 54 and 123 fewer referable cases, for a grading cost saving between pound 3834 and pound 1727 per case missed. Extrapolation modelling over a 20-year time horizon suggests manual grading would cost between pound 25,676 and pound 267,115 per additional quality adjusted life year gained.

CONCLUSIONS

Algorithm (b) is more cost-effective than the algorithm based on quality assessment and MA/DH detection. With respect to the value of introducing automated detection systems into screening programmes, automated grading operates within the recommended national standards in Scotland and is likely to be considered a cost-effective alternative to manual disease/no disease grading.

摘要

目的

评估一种改进的糖尿病视网膜病变自动分级算法相对于之前描述的算法的成本效益,并与手动分级进行比较。

方法

使用来自苏格兰三个筛查中心的参考分级图像集(1253 例可观察/可转诊的视网膜病变和 6333 例轻度或无视网膜病变的个体)评估替代算法的功效。对 180000 人的队列进行了筛查结果和分级及诊断成本建模,可转诊视网膜病变的患病率为 4%。将结合图像质量评估和微动脉瘤(MA)、斑状出血和渗出物检测算法的算法(b)与更简单的算法(a)(使用图像质量评估和 MA/点状出血(DH)检测)进行比较,并与手动分级的当前实践进行比较。

结果

与算法(a)相比,算法(b)将额外识别 113 例可转诊的视网膜病变,额外病例的成本增加 68 英镑。与手动分级相比,自动化分级预计会少识别 54 至 123 例可转诊病例,每漏诊一例可节省 3834 至 1727 英镑的分级成本。20 年时间范围内的外推模型表明,手动分级每增加一个质量调整生命年的成本将在 25676 至 267115 英镑之间。

结论

算法(b)比基于质量评估和 MA/DH 检测的算法更具成本效益。就将自动检测系统引入筛查计划的价值而言,自动分级符合苏格兰的国家标准,并且可能被认为是手动疾病/无疾病分级的一种具有成本效益的替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验