Suppr超能文献

一种检测和评估糖尿病并发症所致视网膜损伤的有效且易懂的方法。

An effective and comprehensible method to detect and evaluate retinal damage due to diabetes complications.

作者信息

Dao Quang Toan, Trinh Hoang Quan, Nguyen Viet Anh

机构信息

Institute of Information Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.

Vietnam Space Center, Vietnam Academy of Science and Technology, Hanoi, Vietnam.

出版信息

PeerJ Comput Sci. 2023 Sep 26;9:e1585. doi: 10.7717/peerj-cs.1585. eCollection 2023.

Abstract

The leading cause of vision loss globally is diabetic retinopathy. Researchers are making great efforts to automatically detect and diagnose correctly diabetic retinopathy. Diabetic retinopathy includes five stages: no diabetic retinopathy, mild diabetic retinopathy, moderate diabetic retinopathy, severe diabetic retinopathy and proliferative diabetic retinopathy. Recent studies have offered several multi-tasking deep learning models to detect and assess the level of diabetic retinopathy. However, the explanation for the assessment of disease severity of these models is limited, and only stops at showing lesions through images. These studies have not explained on what basis the appraisal of disease severity is based. In this article, we present a system for assessing and interpreting the five stages of diabetic retinopathy. The proposed system is built from internal models including a deep learning model that detects lesions and an explanatory model that assesses disease stage. The deep learning model that detects lesions uses the Mask R-CNN deep learning network to specify the location and shape of the lesion and classify the lesion types. This model is a combination of two networks: one used to detect hemorrhagic and exudative lesions, and one used to detect vascular lesions like aneurysm and proliferation. The explanatory model appraises disease severity based on the severity of each type of lesion and the association between types. The severity of the disease will be decided by the model based on the number of lesions, the density and the area of the lesions. The experimental results on real-world datasets show that our proposed method achieves high accuracy of assessing five stages of diabetic retinopathy comparable to existing state-of-the-art methods and is capable of explaining the causes of disease severity.

摘要

全球视力丧失的主要原因是糖尿病视网膜病变。研究人员正在努力自动检测并正确诊断糖尿病视网膜病变。糖尿病视网膜病变包括五个阶段:无糖尿病视网膜病变、轻度糖尿病视网膜病变、中度糖尿病视网膜病变、重度糖尿病视网膜病变和增殖性糖尿病视网膜病变。最近的研究提供了几种多任务深度学习模型来检测和评估糖尿病视网膜病变的程度。然而,这些模型对疾病严重程度评估的解释有限,仅停留在通过图像显示病变上。这些研究没有解释疾病严重程度评估是基于什么依据。在本文中,我们提出了一个用于评估和解释糖尿病视网膜病变五个阶段的系统。所提出的系统由内部模型构建而成,包括一个检测病变的深度学习模型和一个评估疾病阶段的解释模型。检测病变的深度学习模型使用Mask R-CNN深度学习网络来指定病变的位置和形状,并对病变类型进行分类。该模型是两个网络的组合:一个用于检测出血性和渗出性病变,另一个用于检测动脉瘤和增殖等血管病变。解释模型根据每种病变的严重程度以及病变类型之间的关联来评估疾病严重程度。疾病的严重程度将由模型根据病变的数量、密度和面积来决定。在真实世界数据集上的实验结果表明,我们提出的方法在评估糖尿病视网膜病变五个阶段方面达到了与现有最先进方法相当的高精度,并且能够解释疾病严重程度的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6eda/10557496/84ad66cbdcac/peerj-cs-09-1585-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验