Suppr超能文献

标签系统能否有效地支持新兴合作?

Does a tag system effectively support emerging cooperation?

作者信息

Tanimoto Jun

机构信息

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan.

出版信息

J Theor Biol. 2007 Aug 21;247(4):756-64. doi: 10.1016/j.jtbi.2007.03.033. Epub 2007 Apr 3.

Abstract

This paper investigates whether the so-called Tag Systems support emerging cooperation with respect to 2x2 games. The Tag System, initially proposed by Riolo et al. [2001. Evolution of cooperation without reciprocity. Nature 414, 441-443], gives each agent both a Tag and Tol defined by [0,1] real numbers. Tol is a tolerance for recognizing an opponent as a company. Both Tag and Tol are assumed to be evolving. Results show that the tag's effectiveness depends on whether the AllD strategy is allowed in the system. Allowing AllD implies that green beard effect does not work in the system. Thus, (1) the tag's effectiveness is more meager than that reported by Riolo et al., (2) the Tag System can use alternating reciprocity more effectively than the analytic solution in a Hero game; (3) a system using a 2D tag space supports cooperation more effectively than the usual Tag System.

摘要

本文研究了所谓的标签系统是否支持在2x2博弈中新兴的合作。标签系统最初由里奥洛等人提出[2001年。无互惠情况下合作的进化。《自然》414, 441 - 443],为每个智能体赋予一个由[0,1]实数定义的标签和容忍度。容忍度是将对手识别为同伴的一种容忍度。假设标签和容忍度都在进化。结果表明,标签的有效性取决于系统中是否允许“全背叛”策略。允许“全背叛”意味着绿胡须效应在系统中不起作用。因此,(1)标签的有效性比里奥洛等人报告的更微弱;(2)在英雄博弈中,标签系统比解析解能更有效地利用交替互惠;(3)使用二维标签空间的系统比通常的标签系统能更有效地支持合作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验