Ido Yasuo
Boston University Medical Center, Boston, MA 02118, USA.
Antioxid Redox Signal. 2007 Jul;9(7):931-42. doi: 10.1089/ars.2007.1630.
In addition to hyperglycemia, diabetes is associated with increased levels of circulating free fatty acids, lactate, and branched chain amino acids, all of which produce an excessive reduced form of pyridine nucleotides NADH (reductive stress) in the cytosol and mitochondria. Our studies suggest that cytosolic NADH reductive stress under high glucose is largely caused by increased flux of glucose through polyol (sorbitol) pathway consisting of aldose reductase and sorbitol dehydrogenase. Inhibition of aldose reductase that blocks the polyol pathway has been shown to ameliorate diabetic neuropathy in humans. Cytosolic NADH reductive stress is predicted to increase production of diglycerides, reactive oxygen species, and methylglyoxal. Recent studies indicate that increasing NADH affects gene expression through the NADH activating transcriptional co-repressor, C-terminal binding protein (CtBP). In addition, it has been shown that the NADH utilizing enzyme, glyceraldehyde-3-phosphate dehydrogenase, participates as transcriptional regulator. These findings testify to the importance of NADH redox balance in cell biology and pathogenesis of diabetes and its complications. For example, through CtBP, the high NADH to NAD(+) ratio decreases an expression of SirT1, the protein inducing longevity and anti-apoptosis. This review covers metabolic cascades causing reductive stress and oxidative stress in diabetes after a brief introduction of the redox concept.
除高血糖外,糖尿病还与循环游离脂肪酸、乳酸和支链氨基酸水平升高有关,所有这些都会在细胞质和线粒体中产生过量的还原型吡啶核苷酸NADH(还原应激)。我们的研究表明,高糖状态下的细胞质NADH还原应激很大程度上是由葡萄糖通过由醛糖还原酶和山梨醇脱氢酶组成的多元醇(山梨醇)途径的通量增加所致。已证明抑制醛糖还原酶从而阻断多元醇途径可改善人类糖尿病性神经病变。预计细胞质NADH还原应激会增加甘油二酯、活性氧和甲基乙二醛的产生。最近的研究表明,NADH的增加通过NADH激活转录共抑制因子C末端结合蛋白(CtBP)影响基因表达。此外,已表明利用NADH的酶甘油醛-3-磷酸脱氢酶作为转录调节因子发挥作用。这些发现证明了NADH氧化还原平衡在细胞生物学以及糖尿病及其并发症发病机制中的重要性。例如,通过CtBP,高NADH与NAD(+) 比率会降低诱导长寿和抗凋亡的蛋白质SirT1的表达。在简要介绍氧化还原概念后,本综述涵盖了糖尿病中导致还原应激和氧化应激的代谢级联反应。