Volarath Patra, Harrison Robert W, Weber Irene T
Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA.
Curr Top Med Chem. 2007;7(10):1030-8. doi: 10.2174/156802607780906744.
Significant progress over the past decade in virtual representations of molecules and their physicochemical properties has produced new drugs from virtual screening of the structures of single protein molecules by conventional modeling methods. The development of clinical antiviral drugs from structural data for HIV protease has been a major success in structure based drug design. Techniques for virtual screening involve the ranking of the affinity of potential ligands for the target site on a protein. Two main alternatives have been developed: modeling of the target protein with a series of related ligand molecules, and docking molecules from a database to the target protein site. The computational speed and prediction accuracy will depend on the representation of the molecular structure and chemistry, the search or simulation algorithm, and the scoring function to rank the ligands. Moreover, the general challenges in modern computational drug design arise from the profusion of data, including whole genomes of DNA, protein structures, chemical libraries, affinity and pharmacological data. Therefore, software tools are being developed to manage and integrate diverse data, and extract and visualize meaningful relationships. Current areas of research include the development of searchable chemical databases, which requires new algorithms to represent molecules and search for structurally or chemically similar molecules, and the incorporation of machine learning techniques for data mining to improve the accuracy of predictions. Examples will be presented for the virtual screening of drugs that target HIV protease.
在过去十年中,分子及其物理化学性质的虚拟表征取得了重大进展,通过传统建模方法对单个蛋白质分子结构进行虚拟筛选产生了新药。基于HIV蛋白酶的结构数据开发临床抗病毒药物是基于结构的药物设计的一项重大成功。虚拟筛选技术涉及对潜在配体与蛋白质靶位点亲和力的排序。已开发出两种主要方法:用一系列相关配体分子对靶蛋白进行建模,以及将数据库中的分子对接至靶蛋白位点。计算速度和预测准确性将取决于分子结构和化学的表示、搜索或模拟算法以及对配体进行排序的评分函数。此外,现代计算药物设计中的普遍挑战源于大量数据,包括DNA全基因组、蛋白质结构、化学文库、亲和力和药理学数据。因此,正在开发软件工具来管理和整合各种数据,并提取和可视化有意义的关系。当前的研究领域包括可搜索化学数据库的开发,这需要新算法来表示分子并搜索结构或化学相似的分子,以及纳入机器学习技术进行数据挖掘以提高预测准确性。将展示针对HIV蛋白酶的药物虚拟筛选的实例。