Suppr超能文献

使用新型数据库筛选程序进行HIV蛋白酶抑制剂的虚拟筛选

Virtual Screening for HIV Protease Inhibitors Using a Novel Database Filtering Procedure.

作者信息

Takkis Kalev, García-Sosa Alfonso T, Sild Sulev

机构信息

Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, 50411, Estonia.

出版信息

Mol Inform. 2015 Jun;34(6-7):485-92. doi: 10.1002/minf.201400170. Epub 2015 Jun 22.

Abstract

A virtual screening to find novel inhibitors for HIV protease was performed on the ZINC database.1 A critical part in virtual screening and associated techniques is preliminary database filtering and size reduction and for that purpose a novel feature matrix matching procedure was used. The reduction of ∼14 million available ligands to a subset of 14299 ligands was achieved with a structure based approach where the analysis of the 3D structure of the active site of the protease produced a graph with hydrogen bond donor, hydrogen bond acceptor and hydrophobic subsites represented as graph nodes. A similar treatment was also applied to the compound database content and the comparison of binding site and ligand graphs was used to preselect potentially active ligands. The resulting set was further subjected to docking. The algorithm used was able to find several novel as well as previously known and experimentally tested ligands, demonstrating the validity of the approach.

摘要

在ZINC数据库上进行了虚拟筛选,以寻找HIV蛋白酶的新型抑制剂。1虚拟筛选及相关技术中的一个关键部分是初步的数据库过滤和规模缩减,为此使用了一种新颖的特征矩阵匹配程序。通过基于结构的方法,将约1400万个可用配体减少到14299个配体的子集,其中对蛋白酶活性位点的三维结构分析产生了一个图,氢键供体、氢键受体和疏水亚位点表示为图节点。对化合物数据库内容也进行了类似处理,并利用结合位点和配体图的比较来预选潜在的活性配体。所得集合进一步进行对接。所使用的算法能够找到几种新型以及先前已知并经过实验测试的配体,证明了该方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验