Suppr超能文献

衰老小鼠基于视锥细胞的视觉

Cone-based vision in the aging mouse.

作者信息

Williams Gary A, Jacobs Gerald H

机构信息

Neuroscience Research Institute and Department of Psychology, University of California, Santa Barbara, CA 93106, USA.

出版信息

Vision Res. 2007 Jul;47(15):2037-46. doi: 10.1016/j.visres.2007.03.023. Epub 2007 May 16.

Abstract

People often experience age-related declines in cone-based visual capacities despite an absence of apparent visual pathology. Although mice are used as models of human visual pathologies associated with aging, little is known about how age impacts vision in animals with disease-free retinas since most studies have heretofore examined relatively young mice. We examined the effects of age on cone-based vision by assessing opsin gene transcription, cone densities, the flicker electroretinogram (ERG), and behavioral increment thresholds in mice. ERG measurements of cone function showed age-related declines in maximum voltage (Vmax), while opsin gene transcription, cone density, and increment thresholds were unchanged even in extremely old mice. The age-related decline in Vmax seen in mice is qualitatively similar to that documented for human subjects. It is notable that Vmax, a commonly used index of ERG activity, does not predict behavioral performance in the mouse.

摘要

尽管没有明显的视觉病理状况,但人们经常会经历与年龄相关的基于视锥细胞的视觉能力下降。虽然小鼠被用作与衰老相关的人类视觉病理模型,但由于迄今为止大多数研究都考察的是相对年轻的小鼠,因此对于无疾病视网膜的动物,年龄如何影响视觉知之甚少。我们通过评估小鼠的视蛋白基因转录、视锥细胞密度、闪烁视网膜电图(ERG)和行为增量阈值,来研究年龄对基于视锥细胞视觉的影响。视锥细胞功能的ERG测量显示,最大电压(Vmax)随年龄下降,而即使是极老龄小鼠,视蛋白基因转录、视锥细胞密度和增量阈值也没有变化。小鼠中观察到的Vmax随年龄下降在性质上与人类受试者的情况相似。值得注意的是,Vmax作为ERG活动的常用指标,并不能预测小鼠的行为表现。

相似文献

1
Cone-based vision in the aging mouse.
Vision Res. 2007 Jul;47(15):2037-46. doi: 10.1016/j.visres.2007.03.023. Epub 2007 May 16.
2
Transgenic mice expressing a functional human photopigment.
Invest Ophthalmol Vis Sci. 1998 May;39(6):1036-43.
3
Cone receptor variations and their functional consequences in two species of hamster.
Vis Neurosci. 1999 Jan-Feb;16(1):53-63. doi: 10.1017/s0952523899161029.
4
Cone opsin mislocalization in Rpe65-/- mice: a defect that can be corrected by 11-cis retinal.
Invest Ophthalmol Vis Sci. 2005 Oct;46(10):3876-82. doi: 10.1167/iovs.05-0533.
5
Rod- and cone-driven responses in mice expressing human L-cone pigment.
J Neurophysiol. 2015 Oct;114(4):2230-41. doi: 10.1152/jn.00188.2015. Epub 2015 Aug 5.
7
Arrestin 1 and Cone Arrestin 4 Have Unique Roles in Visual Function in an All-Cone Mouse Retina.
Invest Ophthalmol Vis Sci. 2015 Dec;56(13):7618-28. doi: 10.1167/iovs.15-17832.
8
Retinal cone photoreceptors of the deer mouse Peromyscus maniculatus: development, topography, opsin expression and spectral tuning.
PLoS One. 2013 Nov 15;8(11):e80910. doi: 10.1371/journal.pone.0080910. eCollection 2013.
9
Rescue of M-cone Function in Aged Opn1mw-/- Mice, a Model for Late-Stage Blue Cone Monochromacy.
Invest Ophthalmol Vis Sci. 2019 Aug 1;60(10):3644-3651. doi: 10.1167/iovs.19-27079.
10
Rod and cone function in coneless mice.
Vis Neurosci. 2005 Nov-Dec;22(6):807-16. doi: 10.1017/S095252380522610X.

引用本文的文献

1
The effects of a highly bioavailable curcumin Phytosome preparation on the retinal architecture and glial reactivity in the GFAP-IL6 mice.
Front Ophthalmol (Lausanne). 2023 Oct 6;3:1205542. doi: 10.3389/fopht.2023.1205542. eCollection 2023.
2
Age- and sex- divergent translatomic responses of the mouse retinal pigmented epithelium.
Neurobiol Aging. 2024 Aug;140:41-59. doi: 10.1016/j.neurobiolaging.2024.04.012. Epub 2024 May 3.
3
Roles of transmembrane protein 135 in mitochondrial and peroxisomal functions - implications for age-related retinal disease.
Front Ophthalmol (Lausanne). 2024;4. doi: 10.3389/fopht.2024.1355379. Epub 2024 Jan 31.
4
Structural and functional rescue of cones carrying the most common cone opsin C203R missense mutation.
JCI Insight. 2024 Jan 23;9(2):e172834. doi: 10.1172/jci.insight.172834.
5
The first synapse in vision in the aging mouse retina.
Front Cell Neurosci. 2023 Nov 3;17:1291054. doi: 10.3389/fncel.2023.1291054. eCollection 2023.
7
Three Major Causes of Metabolic Retinal Degenerations and Three Ways to Avoid Them.
Int J Mol Sci. 2023 May 13;24(10):8728. doi: 10.3390/ijms24108728.
8
Structure, Function, and Molecular Landscapes of the Aging Retina.
Annu Rev Vis Sci. 2023 Sep 15;9:177-199. doi: 10.1146/annurev-vision-112122-020950. Epub 2023 May 17.
9
Preclinical evaluation of ADVM-062, a novel intravitreal gene therapy vector for the treatment of blue cone monochromacy.
Mol Ther. 2023 Jul 5;31(7):2014-2027. doi: 10.1016/j.ymthe.2023.03.011. Epub 2023 Mar 16.
10
Gene Therapy in Mice and Implications for Blue Cone Monochromacy Patients with Deletion Mutations.
Hum Gene Ther. 2022 Jul;33(13-14):708-718. doi: 10.1089/hum.2021.298. Epub 2022 May 16.

本文引用的文献

2
Rod and cone function in coneless mice.
Vis Neurosci. 2005 Nov-Dec;22(6):807-16. doi: 10.1017/S095252380522610X.
3
4
Differential aging of chromatic and achromatic visual pathways: behavior and electrophysiology.
Vision Res. 2005 May;45(11):1481-9. doi: 10.1016/j.visres.2004.09.041.
5
The Glenn A. Fry Award Lecture 2003: Vision in elders--summary of findings of the SKI study.
Optom Vis Sci. 2005 Feb;82(2):87-93. doi: 10.1097/01.opx.0000153162.05903.4c.
6
Aging reduces center-surround antagonism in visual motion processing.
Neuron. 2005 Feb 3;45(3):361-6. doi: 10.1016/j.neuron.2004.12.041.
7
Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse.
Vision Res. 2004;44(14):1615-22. doi: 10.1016/j.visres.2004.01.016.
8
Cone and rod ERG phototransduction parameters in retinitis pigmentosa.
Invest Ophthalmol Vis Sci. 2003 Sep;44(9):3993-4000. doi: 10.1167/iovs.02-1104.
9
Structure-function analysis of rods and cones in juvenile, adult, and aged C57bl/6 and Balb/c mice.
Vis Neurosci. 2003 Mar-Apr;20(2):211-20. doi: 10.1017/s0952523803202108.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验