Teakle Nl, Flowers Tj, Real D, Colmer Td
School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley 6009, WA, Australia.
J Exp Bot. 2007;58(8):2169-80. doi: 10.1093/jxb/erm102. Epub 2007 May 17.
Salinity and waterlogging interact to reduce growth of poorly adapted species by, amongst other processes, increasing the rate of Na(+) and Cl(-) transport to shoots. Xylem concentrations of these ions were measured in sap collected using xylem-feeding spittlebugs (Philaenus spumarius) from Lotus tenuis and Lotus corniculatus in saline (NaCl) and anoxic (stagnant) treatments. In aerated NaCl solution (200 mM), L. corniculatus had 50% higher Cl(-) concentrations in the xylem and shoot compared with L. tenuis, whereas concentrations of Na(+) and K(+) did not differ between the species. In stagnant-plus-NaCl solution, xylem Cl(-) and Na(+) concentrations of L. corniculatus increased to twice those of L. tenuis. These differences in xylem ion concentrations, which were not caused by variation in transpiration between the two species, contributed to lower net accumulation of Na(+) and Cl(-) in shoots of L. tenuis, indicating that ion transport mechanisms in roots of L. tenuis were contributing to better 'exclusion' of Cl(-) and Na(+) from shoots, compared with L. corniculatus. Root porosity was also higher in L. tenuis, due to constitutive aerenchyma, than in L. corniculatus, suggesting that enhanced root aeration contributed to the maintenance of Na(+) and Cl(-) 'exclusion' in L. tenuis exposed to stagnant-plus-NaCl treatment. Lotus tenuis also had greater dry mass than L. corniculatus after 56 d in NaCl or stagnant-plus-NaCl treatment. Thus, Cl(-) 'exclusion' is a key trait contributing to salt tolerance of L. tenuis, and 'exclusion' of both Cl(-) and Na(+) from the xylem enables L. tenuis to tolerate, better than L. corniculatus, the interactive stresses of salinity and waterlogging.
盐分和涝渍相互作用,通过增加Na⁺和Cl⁻向地上部的运输速率等过程,降低适应性较差物种的生长。使用取食木质部的沫蝉(Philaenus spumarius)从细叶百脉根(Lotus tenuis)和角豆百脉根(Lotus corniculatus)收集树液,测定了这些离子在木质部中的浓度,实验设置了盐分(NaCl)和缺氧(停滞)处理。在通气良好的NaCl溶液(200 mM)中,与细叶百脉根相比,角豆百脉根木质部和地上部的Cl⁻浓度高50%;而Na⁺和K⁺浓度在两个物种间没有差异。在停滞加NaCl溶液中,角豆百脉根木质部的Cl⁻和Na⁺浓度增加到细叶百脉根的两倍。木质部离子浓度的这些差异并非由两个物种蒸腾作用的变化引起,这导致细叶百脉根地上部Na⁺和Cl⁻的净积累较低,表明与角豆百脉根相比,细叶百脉根根部的离子运输机制有助于更好地将Cl⁻和Na⁺“排除”在地上部之外。由于组成型通气组织,细叶百脉根的根孔隙率也高于角豆百脉根,这表明增强的根部通气有助于细叶百脉根在停滞加NaCl处理下维持对Na⁺和Cl⁻的“排除”。在NaCl或停滞加NaCl处理56天后,细叶百脉根的干质量也比角豆百脉根大。因此,Cl⁻“排除”是细叶百脉根耐盐性的关键性状,从木质部中“排除”Cl⁻和Na⁺使细叶百脉根比角豆百脉根更好地耐受盐分和涝渍的交互胁迫。