Gray Annette C, Raingo Jesica, Lipscombe Diane
Department of Neuroscience, Brown University, Providence, RI 02912, United States.
Cell Calcium. 2007 Oct-Nov;42(4-5):409-17. doi: 10.1016/j.ceca.2007.04.003. Epub 2007 May 18.
Calcium ion channels coordinate an astounding number of cellular functions. Surprisingly, only 10 Ca(V)alpha(1) subunit genes encode the structural cores of all voltage-gated calcium channels. What mechanisms exist to modify the structure of calcium channels and optimize their coupling to the rich spectrum of cellular functions? Growing evidence points to the contribution of post-translational alternative processing of calcium channel RNA as the main mechanism for expanding the functional potential of this important gene family. Alternative splicing of RNA is essential during neuronal development where fine adjustments in protein signaling promote and inhibit cell-cell interactions and underlie axonal guidance. However, attributing a specific functional role to an individual splice isoform or splice site has been difficult. In this regard, studies of ion channels are advantageous because their function can be monitored with precision, allowing even subtle changes in channel activity to be detected. Such studies are especially insightful when coupled with information about isoform expression patterns and cellular localization. In this paper, we focus on two sites of alternative splicing in the N-type calcium channel Ca(V)2.2 gene. We first describe cassette exon 18a that encodes a 21 amino acid segment in the II-III intracellular loop region of Ca(V)2.2. Here, we show that e18a is upregulated in the nervous system during development. We discuss these new data in light of our previous reports showing that e18a protects the N-type channel from cumulative inactivation. Second, we discuss our published data on exons e37a and e37b, which encode 32 amino acids in the intracellular C-terminus of Ca(V)2.2. These exons are expressed in a mutually exclusive manner. Exon e37a-containing Ca(V)2.2 mRNAs and their resultant channels express at higher density in dorsal root ganglia and, as we showed recently, e37a increases N-type channel sensitivity to G-protein-mediated inhibition, as compared to generic e37b-containing N-type channels.
钙离子通道协调着数量惊人的细胞功能。令人惊讶的是,仅有10个Ca(V)α(1)亚基基因编码了所有电压门控性钙离子通道的结构核心。存在哪些机制来改变钙离子通道的结构并优化其与丰富多样的细胞功能的耦合呢?越来越多的证据表明,钙离子通道RNA的翻译后可变加工是扩展这个重要基因家族功能潜力的主要机制。RNA可变剪接在神经元发育过程中至关重要,此时蛋白质信号传导的精细调节促进和抑制细胞间相互作用,并构成轴突导向的基础。然而,确定单个剪接异构体或剪接位点的特定功能作用一直很困难。在这方面,离子通道的研究具有优势,因为它们的功能可以精确监测,甚至能检测到通道活性的细微变化。当与异构体表达模式和细胞定位信息相结合时,此类研究尤其具有启发性。在本文中,我们聚焦于N型钙离子通道Ca(V)2.2基因的两个可变剪接位点。我们首先描述编码Ca(V)2.2的II-III细胞内环区域中一段21个氨基酸片段的盒式外显子18a。在此,我们表明e18a在发育过程中的神经系统中上调。我们根据之前的报告讨论这些新数据,这些报告表明e18a可保护N型通道免于累积失活。其次,我们讨论我们已发表的关于外显子e37a和e37b的数据,它们在Ca(V)2.2的细胞内C末端编码32个氨基酸。这些外显子以互斥的方式表达。与一般的含e37b的N型通道相比,含外显子e37a的Ca(V)2.2 mRNA及其产生的通道在背根神经节中以更高的密度表达,并且正如我们最近所表明的,e37a增加了N型通道对G蛋白介导的抑制的敏感性。