Suppr超能文献

各向异性的增量变化会导致电纺支架材料特性的增量变化。

Incremental changes in anisotropy induce incremental changes in the material properties of electrospun scaffolds.

作者信息

Ayres Chantal E, Bowlin Gary L, Pizinger Ryan, Taylor Leander T, Keen Christopher A, Simpson David G

机构信息

Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.

出版信息

Acta Biomater. 2007 Sep;3(5):651-61. doi: 10.1016/j.actbio.2007.02.010. Epub 2007 May 21.

Abstract

Electrospinning can be used to selectively process a variety of natural and synthetic polymers into highly porous scaffolds composed of nano-to-m diameter fibers. This process shows great potential as a gateway to the development of physiologically relevant tissue engineering scaffolds. In this study, we examine how incremental changes in fiber alignment modulate the material properties of a model scaffold. We prepared electrospun scaffolds of gelatin composed of varying fiber diameters and degrees of anisotropy. The scaffolds were cut into a series of "dog-bone" shaped samples in the longitudinal, perpendicular and transverse orientations and the relative degree of fiber alignment, as measured by the fast Fourier transform (FFT) method, was determined for each sample. We measured peak stress, peak strain and the modulus of elasticity as a function of fiber diameter and scaffold anisotropy. Fiber alignment was the variable most closely associated with the regulation of peak stress, peak strain and modulus of elasticity. Incremental changes, as judged by the FFT method, in the proportion of fibers that were aligned along a specific axis induced incremental changes in peak stress in the model scaffolds. These results underscore the critical role that scaffold anisotropy plays in establishing the material properties of an electrospun tissue engineering scaffold and the native extracellular matrix.

摘要

静电纺丝可用于将各种天然和合成聚合物选择性地加工成由纳米到微米直径纤维组成的高度多孔支架。作为开发生理相关组织工程支架的途径,该过程显示出巨大潜力。在本研究中,我们研究了纤维排列的增量变化如何调节模型支架的材料性能。我们制备了由不同纤维直径和各向异性程度的明胶静电纺丝支架。将支架切成一系列纵向、垂直和横向取向的“狗骨”形样品,并通过快速傅里叶变换(FFT)方法测定每个样品的相对纤维排列程度。我们测量了峰值应力、峰值应变和弹性模量作为纤维直径和支架各向异性的函数。纤维排列是与峰值应力、峰值应变和弹性模量调节最密切相关的变量。通过FFT方法判断,沿特定轴排列的纤维比例的增量变化会引起模型支架中峰值应力的增量变化。这些结果强调了支架各向异性在建立静电纺丝组织工程支架和天然细胞外基质的材料性能方面所起的关键作用。

相似文献

1
Incremental changes in anisotropy induce incremental changes in the material properties of electrospun scaffolds.
Acta Biomater. 2007 Sep;3(5):651-61. doi: 10.1016/j.actbio.2007.02.010. Epub 2007 May 21.
2
Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform.
Biomaterials. 2006 Nov;27(32):5524-34. doi: 10.1016/j.biomaterials.2006.06.014. Epub 2006 Jul 21.
3
Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering.
J Biomech. 2007;40(8):1686-1693. doi: 10.1016/j.jbiomech.2006.09.004. Epub 2006 Oct 23.
4
Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix.
Biomed Mater. 2009 Oct;4(5):055010. doi: 10.1088/1748-6041/4/5/055010. Epub 2009 Oct 8.
5
Human Amniotic Membrane with Aligned Electrospun Fiber as Scaffold for Aligned Tissue Regeneration.
Tissue Eng Part C Methods. 2018 Jun;24(6):368-378. doi: 10.1089/ten.TEC.2017.0447. Epub 2018 May 24.
6
Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration.
Biomed Mater. 2007 Dec;2(4):224-32. doi: 10.1088/1748-6041/2/4/004. Epub 2007 Oct 8.
7
Regulation of material properties in electrospun scaffolds: Role of cross-linking and fiber tertiary structure.
Acta Biomater. 2009 Jan;5(1):518-29. doi: 10.1016/j.actbio.2008.06.016. Epub 2008 Jul 4.
9
Image-based quantification of fiber alignment within electrospun tissue engineering scaffolds is related to mechanical anisotropy.
J Biomed Mater Res A. 2016 Jul;104(7):1680-6. doi: 10.1002/jbm.a.35697. Epub 2016 Mar 17.
10
Induction and quantification of collagen fiber alignment in a three-dimensional hydroxyapatite-collagen composite scaffold.
Acta Biomater. 2015 Apr;17:26-35. doi: 10.1016/j.actbio.2015.01.033. Epub 2015 Jan 31.

引用本文的文献

1
Shape-memory responses compared between random and aligned electrospun fibrous mats.
Front Bioeng Biotechnol. 2023 Jan 26;11:1130315. doi: 10.3389/fbioe.2023.1130315. eCollection 2023.
2
Aligned laminin core-polydioxanone/collagen shell fiber matrices effective for neuritogenesis.
Sci Rep. 2018 Apr 3;8(1):5570. doi: 10.1038/s41598-018-23958-3.
3
Ternary Aligned Nanofibers of RGD Peptide-Displaying M13 Bacteriophage/PLGA/Graphene Oxide for Facilitated Myogenesis.
Nanotheranostics. 2018 Feb 15;2(2):144-156. doi: 10.7150/ntno.22433. eCollection 2018.
4
Microelectrode array-induced neuronal alignment directs neurite outgrowth: analysis using a fast Fourier transform (FFT).
Eur Biophys J. 2017 Dec;46(8):719-727. doi: 10.1007/s00249-017-1263-1. Epub 2017 Oct 26.
5
Objective Morphological Quantification of Microscopic Images Using a Fast Fourier Transform (FFT) Analysis.
Curr Protoc Essent Lab Tech. 2013;95(Suppl 7):9.5.1-9.5.12. doi: 10.1002/9780470089941.et0905s07. Epub 2013 Oct 23.
6
Orthogonally oriented scaffolds with aligned fibers for engineering intestinal smooth muscle.
Biomaterials. 2015 Aug;61:75-84. doi: 10.1016/j.biomaterials.2015.05.023. Epub 2015 May 15.
8
Electrospun blends of gelatin and gelatin-dendrimer conjugates as a wound-dressing and drug-delivery platform.
Biomacromolecules. 2013 Nov 11;14(11):4038-45. doi: 10.1021/bm401143p. Epub 2013 Oct 30.
9
Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation.
Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14176-81. doi: 10.1073/pnas.1206962109. Epub 2012 Aug 7.
10
Melt electrospinning of biodegradable polyurethane scaffolds.
Acta Biomater. 2011 Sep;7(9):3277-84. doi: 10.1016/j.actbio.2011.05.017. Epub 2011 May 20.

本文引用的文献

1
Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts.
Biomed Mater. 2006 Jun;1(2):72-80. doi: 10.1088/1748-6041/1/2/004. Epub 2006 May 4.
2
Measuring fiber alignment in electrospun scaffolds: a user's guide to the 2D fast Fourier transform approach.
J Biomater Sci Polym Ed. 2008;19(5):603-21. doi: 10.1163/156856208784089643.
3
Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform.
Biomaterials. 2006 Nov;27(32):5524-34. doi: 10.1016/j.biomaterials.2006.06.014. Epub 2006 Jul 21.
5
Electrospinning polydioxanone for biomedical applications.
Acta Biomater. 2005 Jan;1(1):115-23. doi: 10.1016/j.actbio.2004.09.003.
6
Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy.
Biomaterials. 2006 Jul;27(19):3631-8. doi: 10.1016/j.biomaterials.2006.02.024. Epub 2006 Mar 20.
7
Tissue-engineering scaffolds: can we re-engineer mother nature?
Expert Rev Med Devices. 2006 Jan;3(1):9-15. doi: 10.1586/17434440.3.1.9.
8
9
Electrospinning collagen and elastin: preliminary vascular tissue engineering.
Front Biosci. 2004 May 1;9:1422-32. doi: 10.2741/1313.
10
Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend.
J Control Release. 2002 May 17;81(1-2):57-64. doi: 10.1016/s0168-3659(02)00041-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验