Varma Sameer, Rempe Susan B
Computational Bioscience Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
Biophys J. 2007 Aug 15;93(4):1093-9. doi: 10.1529/biophysj.107.107482. Epub 2007 May 18.
K+ ions seemingly permeate K-channels rapidly because channel binding sites mimic coordination of K+ ions in water. Highly selective ion discrimination should occur when binding sites form rigid cavities that match K+, but not the smaller Na+, ion size or when binding sites are composed of specific chemical groups. Although conceptually attractive, these views cannot account for critical observations: 1), K+ hydration structures differ markedly from channel binding sites; 2), channel thermal fluctuations can obscure sub-Angström differences in ion sizes; and 3), chemically identical binding sites can exhibit diverse ion selectivities. Our quantum mechanical studies lead to a novel paradigm that reconciles these observations. We find that K-channels utilize a "phase-activated" mechanism where the local environment around the binding sites is tuned to sustain high coordination numbers (>6) around K+ ions, which otherwise are rarely observed in liquid water. When combined with the field strength of carbonyl ligands, such high coordinations create the electrical scenario necessary for rapid and selective K+ partitioning. Specific perturbations to the local binding site environment with respect to strongly selective K-channels result in altered K+/Na+ selectivities.
钾离子似乎能迅速透过钾通道,因为通道结合位点模拟了钾离子在水中的配位情况。当结合位点形成与钾离子大小匹配但与较小的钠离子大小不匹配的刚性腔时,或者当结合位点由特定化学基团组成时,就会发生高度选择性的离子识别。尽管这些观点在概念上很有吸引力,但无法解释一些关键观察结果:1)钾离子的水合结构与通道结合位点明显不同;2)通道的热涨落会掩盖离子大小在亚埃尺度上的差异;3)化学性质相同的结合位点可以表现出不同的离子选择性。我们的量子力学研究得出了一种新的范式,能够调和这些观察结果。我们发现钾通道利用一种“相激活”机制,其中结合位点周围的局部环境被调节,以维持钾离子周围的高配位数(>6),而在液态水中很少观察到这种情况。当与羰基配体的场强相结合时,这种高配位会产生快速且选择性的钾离子分配所需的电学场景。对强选择性钾通道的局部结合位点环境进行特定扰动会导致钾离子/钠离子选择性改变。