Suppr超能文献

调整离子配位结构以实现选择性分配。

Tuning ion coordination architectures to enable selective partitioning.

作者信息

Varma Sameer, Rempe Susan B

机构信息

Computational Bioscience Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.

出版信息

Biophys J. 2007 Aug 15;93(4):1093-9. doi: 10.1529/biophysj.107.107482. Epub 2007 May 18.

Abstract

K+ ions seemingly permeate K-channels rapidly because channel binding sites mimic coordination of K+ ions in water. Highly selective ion discrimination should occur when binding sites form rigid cavities that match K+, but not the smaller Na+, ion size or when binding sites are composed of specific chemical groups. Although conceptually attractive, these views cannot account for critical observations: 1), K+ hydration structures differ markedly from channel binding sites; 2), channel thermal fluctuations can obscure sub-Angström differences in ion sizes; and 3), chemically identical binding sites can exhibit diverse ion selectivities. Our quantum mechanical studies lead to a novel paradigm that reconciles these observations. We find that K-channels utilize a "phase-activated" mechanism where the local environment around the binding sites is tuned to sustain high coordination numbers (>6) around K+ ions, which otherwise are rarely observed in liquid water. When combined with the field strength of carbonyl ligands, such high coordinations create the electrical scenario necessary for rapid and selective K+ partitioning. Specific perturbations to the local binding site environment with respect to strongly selective K-channels result in altered K+/Na+ selectivities.

摘要

钾离子似乎能迅速透过钾通道,因为通道结合位点模拟了钾离子在水中的配位情况。当结合位点形成与钾离子大小匹配但与较小的钠离子大小不匹配的刚性腔时,或者当结合位点由特定化学基团组成时,就会发生高度选择性的离子识别。尽管这些观点在概念上很有吸引力,但无法解释一些关键观察结果:1)钾离子的水合结构与通道结合位点明显不同;2)通道的热涨落会掩盖离子大小在亚埃尺度上的差异;3)化学性质相同的结合位点可以表现出不同的离子选择性。我们的量子力学研究得出了一种新的范式,能够调和这些观察结果。我们发现钾通道利用一种“相激活”机制,其中结合位点周围的局部环境被调节,以维持钾离子周围的高配位数(>6),而在液态水中很少观察到这种情况。当与羰基配体的场强相结合时,这种高配位会产生快速且选择性的钾离子分配所需的电学场景。对强选择性钾通道的局部结合位点环境进行特定扰动会导致钾离子/钠离子选择性改变。

相似文献

1
Tuning ion coordination architectures to enable selective partitioning.
Biophys J. 2007 Aug 15;93(4):1093-9. doi: 10.1529/biophysj.107.107482. Epub 2007 May 18.
2
Factors governing the Na(+) vs K(+) selectivity in sodium ion channels.
J Am Chem Soc. 2010 Feb 24;132(7):2321-32. doi: 10.1021/ja909280g.
4
Determinants of K+ vs Na+ selectivity in potassium channels.
J Am Chem Soc. 2009 Jun 17;131(23):8092-101. doi: 10.1021/ja900168k.
5
Ion selectivity in potassium channels.
Biophys Chem. 2006 Dec 1;124(3):279-91. doi: 10.1016/j.bpc.2006.05.033. Epub 2006 Jun 18.
6
K(+)/Na(+) selectivity of the KcsA potassium channel from microscopic free energy perturbation calculations.
Biochim Biophys Acta. 2001 Aug 13;1548(2):194-202. doi: 10.1016/s0167-4838(01)00213-8.
7
Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites.
Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):598-602. doi: 10.1073/pnas.1013636108. Epub 2010 Dec 27.
8
Potassium Versus Sodium Selectivity in Monovalent Ion Channel Selectivity Filters.
Met Ions Life Sci. 2016;16:325-47. doi: 10.1007/978-3-319-21756-7_10.
9
Potassium permeation through the KcsA channel: a density functional study.
Biochim Biophys Acta. 2002 Jun 13;1563(1-2):1-6. doi: 10.1016/s0005-2736(02)00349-8.

引用本文的文献

1
QM Investigation of Rare Earth Ion Interactions with First Hydration Shell Waters and Protein-Based Coordination Models.
J Phys Chem B. 2025 Feb 6;129(5):1529-1543. doi: 10.1021/acs.jpcb.4c07361. Epub 2025 Jan 23.
2
The Molecular Mechanism of Ion Selectivity in Nanopores.
Molecules. 2024 Feb 14;29(4):853. doi: 10.3390/molecules29040853.
3
4
Hydrated Anions: From Clusters to Bulk Solution with Quasi-Chemical Theory.
Acc Chem Res. 2022 Aug 16;55(16):2201-2212. doi: 10.1021/acs.accounts.2c00078. Epub 2022 Jul 13.
5
Thermodynamics of ion binding and occupancy in potassium channels.
Chem Sci. 2021 Jun 2;12(25):8920-8930. doi: 10.1039/d1sc01887f. eCollection 2021 Jul 1.
6
Modeling the Device Behavior of Biological and Synthetic Nanopores with Reduced Models.
Entropy (Basel). 2020 Nov 5;22(11):1259. doi: 10.3390/e22111259.
7
Structure, function, and ion-binding properties of a K channel stabilized in the 2,4-ion-bound configuration.
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16829-16834. doi: 10.1073/pnas.1901888116. Epub 2019 Aug 6.
8
Ion Permeation Mechanism in Epithelial Calcium Channel TRVP6.
Sci Rep. 2018 Apr 9;8(1):5715. doi: 10.1038/s41598-018-23972-5.
9
Determinants of cation transport selectivity: Equilibrium binding and transport kinetics.
J Gen Physiol. 2015 Jul;146(1):3-13. doi: 10.1085/jgp.201511371. Epub 2015 Jun 15.
10
Ion selectivity in the selectivity filters of acid-sensing ion channels.
Sci Rep. 2015 Jan 19;5:7864. doi: 10.1038/srep07864.

本文引用的文献

1
Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels.
J Gen Physiol. 2007 Feb;129(2):135-43. doi: 10.1085/jgp.200609633. Epub 2007 Jan 16.
2
Electrostatic interactions in the channel cavity as an important determinant of potassium channel selectivity.
Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14355-60. doi: 10.1073/pnas.0606660103. Epub 2006 Sep 18.
3
Coordination numbers of alkali metal ions in aqueous solutions.
Biophys Chem. 2006 Dec 1;124(3):192-9. doi: 10.1016/j.bpc.2006.07.002. Epub 2006 Jul 27.
4
Role of fluctuations in a snug-fit mechanism of KcsA channel selectivity.
J Chem Phys. 2006 Jul 14;125(2):24701. doi: 10.1063/1.2205853.
5
Atomic structure of a Na+- and K+-conducting channel.
Nature. 2006 Mar 23;440(7083):570-4. doi: 10.1038/nature04508. Epub 2006 Feb 8.
6
Ions and blockers in potassium channels: insights from free energy simulations.
Biochim Biophys Acta. 2005 Feb 14;1747(1):109-20. doi: 10.1016/j.bbapap.2004.10.006. Epub 2004 Oct 26.
8
Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity.
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4441-6. doi: 10.1073/pnas.0401195101. Epub 2004 Mar 22.
10
Crystal structure of the potassium channel KirBac1.1 in the closed state.
Science. 2003 Jun 20;300(5627):1922-6. doi: 10.1126/science.1085028. Epub 2003 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验