Suppr超能文献

ZD1839 induces p15INK4b and causes G1 arrest by inhibiting the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway.

作者信息

Koyama Makoto, Matsuzaki Youichirou, Yogosawa Shingo, Hitomi Toshiaki, Kawanaka Mayumi, Sakai Toshiyuki

机构信息

Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.

出版信息

Mol Cancer Ther. 2007 May;6(5):1579-87. doi: 10.1158/1535-7163.MCT-06-0814.

Abstract

Inactivation of the retinoblastoma protein pathway is the most common abnormality in malignant tumors. We therefore tried to detect agents that induce the cyclin-dependent kinase inhibitor p15(INK4b) and found that ZD1839 (gefitinib, Iressa) could up-regulate p15(INK4b) expression. ZD1839 has been shown to inhibit cell cycle progression through inhibition of signaling pathways such as phosphatidylinositol 3'-kinase-Akt and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) cascades. However, the mechanism responsible for the differential sensitivity of the signaling pathways to ZD1839 remains unclear. We here showed that ZD1839 up-regulated p15(INK4b), resulting in retinoblastoma hypophosphorylation and G(1) arrest in human immortalized keratinocyte HaCaT cells. p15(INK4b) induction was caused by MAPK/ERK kinase inhibitor (PD98059), but not by Akt inhibitor (SH-6, Akt-III). Moreover, mouse embryo fibroblasts lacking p15(INK4b) were resistant to the growth inhibitory effects of ZD1839 compared with wild-type mouse embryo fibroblasts. Additionally, the status of ERK phosphorylation was related to the antiproliferative activity of ZD1839 in human colon cancer HT-29 and Colo320DM cell lines. Our results suggest that induction of p15(INK4b) by inhibition of the MAPK/ERK pathway is associated with the antiproliferative effects of ZD1839.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验