Suppr超能文献

葡萄糖-6-磷酸脱氢酶(G6PD)基因突变导致蛋白质谷胱甘肽化的细胞控制丧失:机制与影响。

Mutation in G6PD gene leads to loss of cellular control of protein glutathionylation: mechanism and implication.

作者信息

Ayene Iraimoudi S, Biaglow John E, Kachur Alexander V, Stamato Thomas D, Koch Cameron J

机构信息

Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA.

出版信息

J Cell Biochem. 2008 Jan 1;103(1):123-35. doi: 10.1002/jcb.21394.

Abstract

More than 400 million people are susceptible to oxidative stress due to glucose-6-phosphate dehydrogenase (G6PD) deficiency. Protein glutathionylation is believed to be responsible for loss of protein function and/or cellular signaling during oxidative stress. To elucidate the implications of G6PD deficiency specifically in cellular control of protein glutathionylation, we used hydroxyethyldisulfide (HEDS), an oxidant which undergoes disulfide exchange with existing thiols. G6PD deficient (E89) cells treated with HEDS showed a significant increase in protein glutathionylation compared to wild-type (K1) cells. In order to determine whether increase in global protein glutathionylation by HEDS leads to loss of function of an important protein, we compared the effect of HEDS on global protein glutathionylation with that of Ku protein function, a multifunctional DNA repair protein, using a novel ELISA. E89 cells treated with HEDS showed a significant loss of Ku protein binding to DNA. Cellular protein thiol and GSH, whose disulfide is involved in protein glutathionylation, were decreased by HEDS in E89 cells with no significant effect in K1 cells. E89 cells showed lower detoxification of HEDS, that is, conversion of disulfide HEDS to free sulfhydryl mercaptoethanol (ME), compared to K1 cells. K1 cells maintained their NADH level in the presence of HEDS but that of E89 cells decreased by tenfold following a similar exposure. NADPH, a cofactor required to maintain reduced form of the thiols, was decreased more in E89 than K1 cells. The specific role of G6PD in the control of such global protein glutathionylation and Ku function was further demonstrated by reintroducing the G6PD gene into E89 (A1A) cells, which showed a normal phenotype.

摘要

超过4亿人因葡萄糖-6-磷酸脱氢酶(G6PD)缺乏而易受氧化应激影响。蛋白质谷胱甘肽化被认为是氧化应激期间蛋白质功能丧失和/或细胞信号传导的原因。为了阐明G6PD缺乏在细胞对蛋白质谷胱甘肽化控制中的具体影响,我们使用了羟乙基二硫化物(HEDS),一种能与现有硫醇进行二硫键交换的氧化剂。与野生型(K1)细胞相比,用HEDS处理的G6PD缺乏(E89)细胞的蛋白质谷胱甘肽化显著增加。为了确定HEDS引起的整体蛋白质谷胱甘肽化增加是否导致一种重要蛋白质的功能丧失,我们使用一种新型酶联免疫吸附测定法(ELISA),比较了HEDS对整体蛋白质谷胱甘肽化的影响与对Ku蛋白功能的影响,Ku蛋白是一种多功能DNA修复蛋白。用HEDS处理的E89细胞显示Ku蛋白与DNA的结合显著丧失。细胞蛋白质硫醇和谷胱甘肽(GSH),其与蛋白质谷胱甘肽化有关的二硫键,在E89细胞中被HEDS降低,而在K1细胞中没有显著影响。与K1细胞相比,E89细胞对HEDS的解毒作用较低,即二硫键HEDS转化为游离巯基巯基乙醇(ME)。在HEDS存在的情况下,K1细胞维持其烟酰胺腺嘌呤二核苷酸(NADH)水平,但E89细胞在类似暴露后其NADH水平下降了十倍。烟酰胺腺嘌呤二核苷酸磷酸(NADPH)是维持硫醇还原形式所需的一种辅助因子,在E89细胞中的减少比K1细胞更多。通过将G6PD基因重新导入E89(A1A)细胞,进一步证明了G6PD在控制这种整体蛋白质谷胱甘肽化和Ku功能中的特定作用,该细胞表现出正常表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验