Suppr超能文献

老年大鼠基底前脑神经元中的钙缓冲系统与钙信号传导

Calcium buffering systems and calcium signaling in aged rat basal forebrain neurons.

作者信息

Murchison David, Griffith William H

机构信息

Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA.

出版信息

Aging Cell. 2007 Jun;6(3):297-305. doi: 10.1111/j.1474-9726.2007.00293.x.

Abstract

Disturbances of neuronal Ca2+ homeostasis are considered to be important determinants of age-related cognitive impairment. Cholinergic neurons of the basal forebrain (BF) are principal targets of decline associated with aging and dementia. During the last several years, we have attempted to link these concepts in a rat model of 'normal' aging. In this review, we will describe some changes that we have observed in Ca2+ signaling of aged BF neurons and the reversal of one of these changes by dietary caloric restriction. Our evidence supports a scenario in which subtle changes in the properties of voltage-gated Ca2+ channels result in increased Ca2+ influx during aging. This increased Ca2+, in turn, triggers an increase in rapid Ca2+ buffering in the somatic compartment of aged BF neurons. However, this nominal 'compensation', along with other changes in Ca2+ handling machinery (notably mitochondria) alters the Ca2+ signal with age in a way that is dependent on the magnitude of the Ca2+ load. By combining whole-cell patch clamp electrophysiology, ratiometric Ca2+-sensitive microfluorimetry and single-cell reverse transcription-polymerase chain reaction, we have determined that age-related rapid buffering changes are present in identified cholinergic BF neurons and that these changes can be prevented by a caloric restriction dietary regimen. Because caloric restriction extends lifespan and retards the progression of age-related dysfunction, these findings suggest that increased Ca2+ buffering in cholinergic neurons may be relevant to cognitive decline during normal aging. Importantly, calcium homeostatic mechanisms of BF cholinergic neurons are amenable to dietary interventions that could promote cognitive health during aging.

摘要

神经元钙稳态的紊乱被认为是与年龄相关的认知障碍的重要决定因素。基底前脑(BF)的胆碱能神经元是与衰老和痴呆相关衰退的主要靶点。在过去几年中,我们试图在“正常”衰老的大鼠模型中将这些概念联系起来。在这篇综述中,我们将描述我们在老年BF神经元的钙信号中观察到的一些变化,以及饮食热量限制对其中一种变化的逆转作用。我们的证据支持这样一种情况,即电压门控钙通道特性的细微变化导致衰老过程中钙内流增加。这种增加的钙反过来又触发了老年BF神经元胞体区快速钙缓冲的增加。然而,这种名义上的“补偿”,连同钙处理机制(特别是线粒体)的其他变化,随着年龄的增长以一种依赖于钙负荷大小的方式改变了钙信号。通过结合全细胞膜片钳电生理学、比率型钙敏感微荧光测定法和单细胞逆转录聚合酶链反应,我们确定在已鉴定的胆碱能BF神经元中存在与年龄相关的快速缓冲变化,并且这些变化可以通过热量限制饮食方案来预防。由于热量限制延长了寿命并延缓了与年龄相关的功能障碍的进展,这些发现表明胆碱能神经元中钙缓冲的增加可能与正常衰老过程中的认知衰退有关。重要的是,BF胆碱能神经元的钙稳态机制适合于饮食干预,这可能在衰老过程中促进认知健康。

相似文献

1
Calcium buffering systems and calcium signaling in aged rat basal forebrain neurons.
Aging Cell. 2007 Jun;6(3):297-305. doi: 10.1111/j.1474-9726.2007.00293.x.
2
Enhanced calcium buffering in F344 rat cholinergic basal forebrain neurons is associated with age-related cognitive impairment.
J Neurophysiol. 2009 Oct;102(4):2194-207. doi: 10.1152/jn.00301.2009. Epub 2009 Aug 12.
3
Increased calcium buffering in basal forebrain neurons during aging.
J Neurophysiol. 1998 Jul;80(1):350-64. doi: 10.1152/jn.1998.80.1.350.
4
Reduced mitochondrial buffering of voltage-gated calcium influx in aged rat basal forebrain neurons.
Cell Calcium. 2004 Jul;36(1):61-75. doi: 10.1016/j.ceca.2003.11.010.
9
Low voltage-activated calcium and fast tetrodotoxin-resistant sodium currents define subtypes of cholinergic and noncholinergic neurons in rat basal forebrain.
Brain Res Mol Brain Res. 2005 Apr 4;134(2):226-38. doi: 10.1016/j.molbrainres.2004.10.041. Epub 2005 Jan 21.

引用本文的文献

1
The Changes of Blood and CSF Ion Levels in Depressed Patients: a Systematic Review and Meta-analysis.
Mol Neurobiol. 2024 Aug;61(8):5369-5403. doi: 10.1007/s12035-023-03891-x. Epub 2024 Jan 8.
3
Calcium-Signalling in Human Glaucoma Lamina Cribrosa Myofibroblasts.
Int J Mol Sci. 2023 Jan 9;24(2):1287. doi: 10.3390/ijms24021287.
4
Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson's disease.
Brain Commun. 2022 Jun 22;4(4):fcac165. doi: 10.1093/braincomms/fcac165. eCollection 2022.
7
Amitriptyline Decreases GABAergic Transmission in Basal Forebrain Neurons Using an Optogenetic Model of Aging.
Front Aging Neurosci. 2021 May 28;13:673155. doi: 10.3389/fnagi.2021.673155. eCollection 2021.
8
Compartmentalized Signaling in Aging and Neurodegeneration.
Cells. 2021 Feb 22;10(2):464. doi: 10.3390/cells10020464.
9
Are mitochondria the key to reduce the age-dependent decline in axon growth after spinal cord injury?
Neural Regen Res. 2021 Jul;16(7):1444-1445. doi: 10.4103/1673-5374.301016.
10
Redox and mTOR-dependent regulation of plasma lamellar calcium influx controls the senescence-associated secretory phenotype.
Exp Biol Med (Maywood). 2020 Nov;245(17):1560-1570. doi: 10.1177/1535370220943122. Epub 2020 Jul 19.

本文引用的文献

1
Aging, modulation of food intake and spatial memory: a longitudinal study.
Arch Gerontol Geriatr. 1992;15 Suppl 1:185-95. doi: 10.1016/s0167-4943(05)80018-4.
3
Neural plasticity in the ageing brain.
Nat Rev Neurosci. 2006 Jan;7(1):30-40. doi: 10.1038/nrn1809.
4
Normal brain ageing: models and mechanisms.
Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2347-54. doi: 10.1098/rstb.2005.1771.
6
Brain cholinergic vulnerability: relevance to behavior and disease.
Biochem Pharmacol. 2005 Oct 15;70(8):1115-24. doi: 10.1016/j.bcp.2005.05.019.
7
Low voltage-activated calcium and fast tetrodotoxin-resistant sodium currents define subtypes of cholinergic and noncholinergic neurons in rat basal forebrain.
Brain Res Mol Brain Res. 2005 Apr 4;134(2):226-38. doi: 10.1016/j.molbrainres.2004.10.041. Epub 2005 Jan 21.
8
Calorie restriction, SIRT1 and metabolism: understanding longevity.
Nat Rev Mol Cell Biol. 2005 Apr;6(4):298-305. doi: 10.1038/nrm1616.
10
Ca2+ regulation and gene expression in normal brain aging.
Trends Neurosci. 2004 Oct;27(10):614-20. doi: 10.1016/j.tins.2004.07.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验