Suppr超能文献

活细胞成像揭示了钙库耗竭后基质相互作用分子1的顺序寡聚化及局部质膜靶向作用。

Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion.

作者信息

Liou Jen, Fivaz Marc, Inoue Takanari, Meyer Tobias

机构信息

Department of Chemical and Systems Biology, Stanford University Medical School, 318 Campus Drive, Clark Center, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 May 29;104(22):9301-6. doi: 10.1073/pnas.0702866104. Epub 2007 May 21.

Abstract

Stromal interaction molecule 1 (STIM1) has recently been identified by our group and others as an endoplasmic reticulum (ER) Ca(2+) sensor that responds to ER Ca(2+) store depletion and activates Ca(2+) channels in the plasma membrane (PM). The molecular mechanism by which STIM1 transduces signals from the ER lumen to the PM is not yet understood. Here we developed a live-cell FRET approach and show that STIM1 forms oligomers within 5 s after Ca(2+) store depletion. These oligomers rapidly dissociated when ER Ca(2+) stores were refilled. We further show that STIM1 formed oligomers before its translocation within the ER network to ER-PM junctions. A mutant STIM1 lacking the C-terminal polybasic PM-targeting motif oligomerized after Ca(2+) store depletion but failed to form puncta at ER-PM junctions. Using fluorescence recovery after photobleaching measurements to monitor STIM1 mobility, we show that STIM1 oligomers translocate on average only 2 mum to reach ER-PM junctions, arguing that STIM1 ER-to-PM signaling is a local process that is suitable for generating cytosolic Ca(2+) gradients. Together, our live-cell measurements dissect the STIM1 ER-to-PM signaling relay into four sequential steps: (i) dissociation of Ca(2+), (ii) rapid oligomerization, (iii) spatially restricted translocation to nearby ER-PM junctions, and (iv) activation of PM Ca(2+) channels.

摘要

基质相互作用分子1(STIM1)最近被我们团队和其他团队鉴定为一种内质网(ER)钙传感器,它能对内质网钙库耗竭做出反应,并激活质膜(PM)中的钙通道。目前尚不清楚STIM1将信号从内质网腔传导至质膜的分子机制。在此,我们开发了一种活细胞荧光共振能量转移(FRET)方法,并表明STIM1在钙库耗竭后5秒内形成寡聚体。当内质网钙库重新充盈时,这些寡聚体迅速解离。我们进一步表明,STIM1在内质网网络中向内质网 - 质膜连接处转位之前就形成了寡聚体。一种缺乏C末端多碱性质膜靶向基序的突变型STIM1在钙库耗竭后形成寡聚体,但未能在内质网 - 质膜连接处形成斑点。利用光漂白后荧光恢复测量来监测STIM1的流动性,我们发现STIM1寡聚体平均仅转位2微米就能到达内质网 - 质膜连接处,这表明STIM1从内质网到质膜的信号传导是一个局部过程,适合产生胞质钙梯度。总之,我们的活细胞测量将STIM1从内质网到质膜的信号传递分解为四个连续步骤:(i)钙解离,(ii)快速寡聚化,(iii)在空间上受限地转位到附近的内质网 - 质膜连接处,以及(iv)激活质膜钙通道。

相似文献

1
Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion.
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9301-6. doi: 10.1073/pnas.0702866104. Epub 2007 May 21.
2
Role of phosphoinositides in STIM1 dynamics and store-operated calcium entry.
Biochem J. 2009 Dec 14;425(1):159-68. doi: 10.1042/BJ20090884.
3
A relay mechanism between EB1 and APC facilitate STIM1 puncta assembly at endoplasmic reticulum-plasma membrane junctions.
Cell Calcium. 2013 Sep;54(3):246-56. doi: 10.1016/j.ceca.2013.06.008. Epub 2013 Jul 18.
7
Fast endocytic recycling determines TRPC1-STIM1 clustering in ER-PM junctions and plasma membrane function of the channel.
Biochim Biophys Acta. 2015 Oct;1853(10 Pt A):2709-21. doi: 10.1016/j.bbamcr.2015.07.019. Epub 2015 Jul 30.
9
Junctate is a Ca2+-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1).
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8682-7. doi: 10.1073/pnas.1200667109. Epub 2012 May 14.
10
Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation.
Nature. 2008 Jul 24;454(7203):538-42. doi: 10.1038/nature07065. Epub 2008 Jul 2.

引用本文的文献

1
Trifolin inhibits the calcium-driven contraction pathway in vascular smooth muscle.
Front Pharmacol. 2025 May 30;16:1573483. doi: 10.3389/fphar.2025.1573483. eCollection 2025.
2
BTP2 restricts Tulane virus and human norovirus replication independent of store-operated calcium entry.
J Virol. 2025 Jun 17;99(6):e0044425. doi: 10.1128/jvi.00444-25. Epub 2025 May 29.
3
Intracellular Membrane Contact Sites in Skeletal Muscle Cells.
Membranes (Basel). 2025 Jan 14;15(1):29. doi: 10.3390/membranes15010029.
4
IP3 receptor depletion in a spontaneous canine model of Charcot-Marie-Tooth disease 1J with amelogenesis imperfecta.
PLoS Genet. 2025 Jan 13;21(1):e1011328. doi: 10.1371/journal.pgen.1011328. eCollection 2025 Jan.
5
Septins as key players in spermatogenesis, fertilisation and pre-implantation embryogenic cytoplasmic dynamics.
Cell Commun Signal. 2024 Oct 28;22(1):523. doi: 10.1186/s12964-024-01889-z.
6
Imaging and proteomics toolkits for studying organelle contact sites.
Front Cell Dev Biol. 2024 Sep 24;12:1466915. doi: 10.3389/fcell.2024.1466915. eCollection 2024.
7
Plasma membrane curvature regulates the formation of contacts with the endoplasmic reticulum.
Nat Cell Biol. 2024 Nov;26(11):1878-1891. doi: 10.1038/s41556-024-01511-x. Epub 2024 Sep 17.
8
Membrane Curvature Promotes ER-PM Contact Formation via Junctophilin-EHD Interactions.
bioRxiv. 2024 Jun 30:2024.06.29.601287. doi: 10.1101/2024.06.29.601287.
9
Essential role of N-terminal SAM regions in STIM1 multimerization and function.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2318874121. doi: 10.1073/pnas.2318874121. Epub 2024 May 16.
10
Synthetic Biology Meets Ca Release-Activated Ca Channel-Dependent Immunomodulation.
Cells. 2024 Mar 7;13(6):468. doi: 10.3390/cells13060468.

本文引用的文献

1
PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane.
Science. 2006 Dec 1;314(5804):1458-61. doi: 10.1126/science.1134389. Epub 2006 Nov 9.
2
Cell biology. Tools to tamper with phosphoinositides.
Science. 2006 Dec 1;314(5804):1402-3. doi: 10.1126/science.1136314. Epub 2006 Nov 9.
3
Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum.
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16704-9. doi: 10.1073/pnas.0608358103. Epub 2006 Oct 30.
4
Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1.
Biochem Biophys Res Commun. 2006 Dec 1;350(4):969-76. doi: 10.1016/j.bbrc.2006.09.134. Epub 2006 Oct 4.
6
CRACM1 multimers form the ion-selective pore of the CRAC channel.
Curr Biol. 2006 Oct 24;16(20):2073-9. doi: 10.1016/j.cub.2006.08.085. Epub 2006 Sep 14.
9
Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai.
Nature. 2006 Sep 14;443(7108):226-9. doi: 10.1038/nature05108. Epub 2006 Aug 20.
10
Orai1 is an essential pore subunit of the CRAC channel.
Nature. 2006 Sep 14;443(7108):230-3. doi: 10.1038/nature05122. Epub 2006 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验