Elkin Benjamin S, Azeloglu Evren U, Costa Kevin D, Morrison Barclay
Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA.
J Neurotrauma. 2007 May;24(5):812-22. doi: 10.1089/neu.2006.0169.
Knowledge of brain tissue mechanical properties may be critical for formulating hypotheses about traumatic brain injury (TBI) mechanisms and for accurate TBI simulations. To determine the local mechanical properties of anatomical subregions within the rat hippocampus, the atomic force microscope (AFM) was adapted for use on living brain tissue. The AFM provided advantages over alternative methods for measuring local mechanical properties of brain because of its high spatial resolution, high sensitivity, and ability to measure live samples under physiologic conditions. From AFM indentations, a mean pointwise or depth-dependent apparent elastic modulus, E, was determined for the following hippocampal subregions: CA1 pyramidal cell layer (CA1P) and stratum radiatum (CA1SR), CA3 pyramidal cell layer (CA3P) and stratum radiatum (CA3SR), and the dentate gyrus (DG). For all regions, E was indentation-depth-dependent, reflecting the nonlinearity of brain tissue. At an indentation depth of 3microm, E was 234 +/- 152 Pa for CA3P, 308 +/- 184 Pa for CA3SR, 137 +/- 97 Pa for CA1P, 169 +/- 52 Pa for CA1SR, and 201 +/- 133 Pa for DG (mean +/- SD). Our results demonstrate for the first time that the hippocampus is mechanically heterogeneous. Based on our findings, we discuss hypotheses accounting for experimentally observed patterns of hippocampal cell death, which can be tested with biofidelic finite element models of TBI.
了解脑组织的力学特性对于形成关于创伤性脑损伤(TBI)机制的假设以及进行准确的TBI模拟可能至关重要。为了确定大鼠海马体内解剖亚区域的局部力学特性,对原子力显微镜(AFM)进行了改造,使其适用于活体脑组织。由于AFM具有高空间分辨率、高灵敏度以及在生理条件下测量活体样本的能力,因此与测量脑局部力学特性的其他方法相比具有优势。通过AFM压痕,确定了以下海马亚区域的平均逐点或深度依赖性表观弹性模量E:CA1锥体细胞层(CA1P)和辐射层(CA1SR)、CA3锥体细胞层(CA3P)和辐射层(CA3SR)以及齿状回(DG)。对于所有区域,E均与压痕深度有关,反映了脑组织的非线性。在压痕深度为3微米时,CA3P的E为234±152帕斯卡,CA3SR为308±184帕斯卡,CA1P为137±97帕斯卡,CA1SR为169±52帕斯卡,DG为201±133帕斯卡(平均值±标准差)。我们的结果首次证明海马体在力学上是异质的。基于我们的发现,我们讨论了解释实验观察到的海马体细胞死亡模式的假设,这些假设可以用TBI的生物逼真有限元模型进行检验。